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Abstract

Structural Equation Modeling (SEM) is a widely applied technique to model re-

lationships including both observed and latent variables. Recently, the explanation of

subgroup differences in SEM parameters has attracted the attention of applied social

researchers. Examples are differences in survey measurement error variance and dif-

ferences in the variance of, possibly only indirectly observed, wages or educational

achievement to explain inequality. However, these fields have been hindered by the

lack of methods to regress a SEM parameter such as a latent variable’s variance on

a set of predictor variables. I present a method, “IPC regression”, addressing this

problem. IPC regression involves three analysis steps: 1) running a pooled SEM, 2)

calculating so-called “individual parameter contributions” (IPC’s), and 3) regressing

these IPC’s on the predictors of scientific interest. IPC regression is presented in a gen-

eral framework that encompasses any type of SEM parameter and prediction model.

Large- and small-sample properties are considered, and an example application illus-

trates the implications for practical research.

All data and analysis code used are available from http://goo.gl/fstgW.
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Structural equation modeling (Bollen, 1989) is a widely applied technique in social and

psychological research to model relationships among observed and latent variables (Mac-

Callum and Austin, 2000; Bollen, 2002). One drawback of classical structural equation

modeling (SEM) is that parameter values are assumed equal over all individuals. Modern

extensions to SEM allow for parameter differences over subgroups but not for a way of

modeling and explaining such differences. I therefore introduce a method, “individual pa-

rameter contribution (IPC) regression”, to model subgroup differences in any parameter of

a SEM model as a function of explanatory variables.

Explaining differences in SEM parameters is a common but sometimes difficult task.

For example, survey methodologists seeking to deal with measurement error in question-

naires have tried to explain differences in survey question reliability and measurement error

variance over respondents (e.g., Alwin and Krosnick, 1991; Scherpenzeel and Saris, 1997;

Alwin, 2007; Révilla, 2012). Unfortunately, as noted by Alwin (2007, p. 219), “it is not

possible to predict reliability of reporting for an individual”. Since SEM programs do

not allow one to regress, for instance, an error variance parameter value on age, gender and

education simultaneously, these studies have been limited to looking at the effect of one ex-

planatory variable at a time using multiple-group structural equation modeling (MGSEM),

a point made explictly by Révilla (2012, p. 52). In addition, MGSEM requires a contin-

uous variable such as age to be split up into arbitrary categories. The main disadvantage

of this one-variable-at-a-time approach is that one cannot disentangle the effects of, for

instance, age and education; two variables that are thought to impact measurement error

variance but which tend to correlate. Questions of scientific interest, such as whether the

effect of age on measurement error is mediated by cognitive ability (Alwin, 2007, p. 218)
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have remained unanswered. The study of mechanisms impacting survey measurement er-

ror therefore appears to have been inhibited by a technical difficulty. This difficulty can be

resolved by IPC regression as a general method to model differences in SEM parameters,

including measurement error variances, something I demonstrate by example in this article.

Western and Bloome (2009) also focused on explaining variance, arguing that within-

group variance is an important determinant of societal inequality. They suggested modeling

the variance of a dependent variable with a so-called “variance function regression”. While

useful, their method assumed directly observed and perfectly measured dependent vari-

ables, and does not allow the dependent or independent variable to be latent. Potentially,

unobserved variables could be incorporated using Structural Equation Models, but there

is currently no method to perform variance function regression for SEM with latent vari-

ables. Recent applications of variance function regression in the sociological literature have

predicted the variance in wages (Western and Rosenfeld, 2011), educational achievement

(Montt, 2011), and self-reported health (Zheng, Yang and Land, 2011), all variables that

have been shown to contain measurement error (Bound and Krueger, 1991; Crossley and

Kennedy, 2002; Schröder and Ganzeboom, 2009). This clear need to study inequality in

imperfectly measured variables implies that a method of predicting the variance of latent

dependent variables is an important step forwards. I show that IPC regression is a general

framework that can be used to address this problem.

The IPC regression method proposed here proceeds in three steps. In the first step a

classical structural equation model is fit. The second step is to obtain individual parameter

contributions (IPC’s) from the first-step solution. As shown below, this can be done by in-

verting a Structural Equation Model’s mapping from parameters to individual observations.

The third step is then simply to regress the IPC’s obtained in the second step on predictors

of interest.

Individual parameter contributions are calculated by a transformation of the casewise

3



gradient of the likelihood with respect to the parameters. Analysis of casewise gradients

has a long history in econometrics (Brown, Durbin and Evans, 1975; Nyblom, 1989; An-

drews, 1993; Kuan and Hornik, 1995; Hjort and Koning, 2002; Zeileis, 2005; Zeileis and

Hornik, 2007). So-called “structural change tests”, obtained by cumulating casewise gra-

dients over cases, are well-established for the detection of change points in time series

analysis, and have more recently been proposed by Merkle and Zeileis (2013) as an ex-

ploration of measurement invariance in factor analysis. Structural change tests allow the

researcher to explore subgroups that may have differing parameter values by performing a

series of hypothesis tests. IPC regression is different in that it directly models parameter

differences as a function of the predictors. The advantage of structural change tests is that

they provide well-established hypothesis tests to explore unmodeled heterogeneity. The

advantage of IPC regression is that, through regression models, it allows the researcher to

explain such heterogeneity. The two methods are therefore related but not identical and

serve mutually complementary purposes.

IPC regression can be seen as a generalization of Modification Indices (MI’s, or “La-

grange Multiplier tests”) and Expected Parameter Changes (EPC’s) in multiple-group SEM

with equality restrictions (Saris, Satorra and Sörbom, 1987). By viewing the grouping vari-

able in MGSEM as the “predictor variable” and differences between groups in a parame-

ter value as the “dependent variable”, the Appendix shows that, asymptotically, EPC’s for

freeing cross-group equalities correspond to IPC dummy regression coefficients while MI’s

correspond to the Wald tests on these coefficients. Of course, this correspondence ends for

situations that cannot be handled by MGSEM, such as predictors that are continuous, mul-

tiple predictors, and mediation models for parameter differences – as discussed above, all

situations that occur in practical research. In this sense, IPC regression is a generalization

of the MI and EPC in MGSEM to situations that cannot be handled by MGSEM.

The contributions of this article are fourfold. First, it introduces IPC regression as a flex-
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ible method of explaining differences between SEM parameters over subgroups, resolving

the problems experienced in the survey methodology and within-group social inequality

literatures. Second, it provides a basic evaluation of the performance of this method in

a small Monte Carlo simulation. Third, it demonstrates the practical implications of IPC

regression for applied research by an example survey methodology application. Finally,

example code for standard SEM software is provided in an online appendix that can be

used by applied researchers wishing to implement the method.

1. INDIVIDUAL PARAMETER CONTRIBUTIONS TO SEM ESTIMATES

In a SEM model, covariances are considered functions of parameters, while covariances

are themselves functions of individual observations. This section shows how inverting that

relationship yields individual parameter contributions (IPC’s), and how these IPC’s can be

used to investigate the relationship between parameter estimates and predictors.

1.1. Structural Equation Modeling (SEM) Framework

Given a vector y of p observed variables with population covariance matrix Σ, a structural

equation model can be viewed as a covariance structure model Σ = Σ(θ), where Σ(θ) is a

continuously differentiable matrix-valued (symmetric and positive definite) function of the

vector of parameters θ of the model (see, e.g. Bollen, 1989, for more details).

Given an observed covariance matrix S, based on a sample of size n of y, the vector of

parameters θ is estimated by minimizing with respect to θ a discrepancy function F (θ) =

F (S,Σ(θ)) of S and Σ(θ). This approach encompasses maximum likelihood as well as

weighted least squares estimators.

A key matrix is the hessian matrix V = 1
2
∂2F (S,Σ)
∂σ∂σ′ , where σ := vech(Σ) is the half

vectorization of Σ. In weighted least squares estimators, V is a weight matrix determined
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by the choice of estimator (Satorra, 1989). Sample estimates of V are generally obtained

as a function of either, or both of, the observed or the implied covariance matrices.

To study how parameter values vary as a function of observations, we also define n

vectors of size p(p+ 1)/2

di := vech [(yi − ȳ)(yi − ȳ)′] , (1)

(e.g. Satorra, 1992), so that the average of the individual moment contributions, d, will

yield the observed covariances d̄ = s.

1.2. Individual Parameter Contributions (IPC’s)

Whether maximum-likelihood or some other estimator is used, SEM parameter estimates

θ̂ can be seen as the solution to the estimating equation ∂F/∂θ = 0, that is, f(s,θ) =

f(d̄,θ) = 0, where f is defined implictly. To see how the data vector d is transformed into

parameter estimates θ̂ by SEM analysis, following Bentler and Dijkstra (1984) we observe

that parameter estimates can be approximated as a linear function of the data,

θ̂ ≈
(
∂θ

∂d̄

)
d̄ = Wd̄. (2)

Since θ and d̄ are linked implictly by the estimating equation f(d̄,θ) = 0, the derivative

∂θ/∂d̄ can be obtained by applying the implicit function theorem:

W = ∂θ

∂d̄
= −

(
∂f

∂θ′

)−1 (
∂f

∂d̄′

)
= (∆′V∆)−1∆′V, (3)

where ∆ = ∂σ/∂θ, and the second step follows from the results given by Neudecker and

Satorra (1991), who also give ∆ as a function of the model parameter estimates.
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Now, since θ̂ = Wd̄, it follows that if we define a transformed data vector,

t := Wd, (4)

then, under the assumption that W is constant, the mean of this transformed data vector t

will equal the parameter estimates, t̄ = Wd̄ = θ̂. Note that this property will also hold

for subgroups. Thus, the transformed data vector t can be seen as a vector of “individ-

ual parameter contributions” (IPC’s). Consistent sample estimates of the IPC’s, t̂, can be

obtained by replacing W by its sample estimate Ŵ.

Although not usually described explicitly, IPC’s are a common feature in the literature

on “robust” standard errors and linearization variance estimation of maximum-likelihood

estimates under complex sampling (e.g. Skinner, 1986). Calculating the variance matrix of

the observed IPC’s t̂ yields the robust covariance matrix, v̂ar(θ̂) = n−1(t̂ − ¯̂t)′(t̂ − ¯̂t) =

Wv̂ar(d)W, which equals Equation [16.10] of Satorra and Bentler (1994). In other words,

calculating standard deviations of the t’s will provide exactly the “robust” standard errors.

Although here I use the IPC’s for a different purpose, this property guarantees that inference

about the IPC’s is robust to nonnormality.

1.3. Predicting SEM Parameter Estimates

Consider the following hypothetical model predicting a SEM parameter from a vector of

predictors z,

θij = γzi + δi. (5)

If the individual parameter values for the j-th parameter, θij , were observed, the usual

OLS estimator of γ would be (zz′)−1zΘj , where Θj := (θ1j, ...,θnj)′. However, although

individual parameters are, of course, unobserved, since t̂j is a consistent estimate of Θj , a
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consistent sample estimate of γ̂ is the OLS regression of the j-th IPC on the predictors,

γ̂ = (zz′)−1zt̂. (6)

Note that, in fact, although we will not consider this issue further, other estimators than for

the linear regression model 5 can in principle be obtained in a similar way. For example,

choosing the GLM model with Gamma distribution and a log link will yield Western and

Bloome (2009)’s variance function regression for SEM with latent variables.

Consider the special case where a multiple-group structural equation model (MGSEM)

could be formulated with cross-group equality constraints on all parameters including the

parameter of interest. A Modification Index (MI) and Expected Parameter Change (EPC)

(Saris, Satorra and Sörbom, 1987) could then be calculated for a cross-group equality con-

straint on a parameter of interest. Satorra (1989, section 5) discussed “generalized” MI’s

and EPC’s, that are robust to nonnormality. In this simple case, an alternative formulation

of the problem is in terms of IPC regression: in the first step, a one-group SEM is estimated,

in the second step the IPC’s for the parameter of interest calculated, and in the third step,

these IPC’s are regressed on z, a set of dummy-coded grouping variables. It turns out that

the regression coefficients obtained by this IPC regression are asymptotically equal to the

generalized EPC’s and the Wald tests on the IPC regression coefficients equivalent to the

generalized MI. The proof of this interesting result is given in Appendix A. Note that IPC

regression is more general than the MGSEM approach, since z need not represent a single

grouping variable, and the relationship between z and the IPC’s can be modeled directly.

Considering the close link between IPC regression and MI’s and EPC’s, it is not sur-

prising that their primary assumptions should be the same. This assumption is that the

second derivative matrix J := ∆′V∆ is approximately constant between the null and

the true model (Saris, Satorra and Sörbom, 1987). For IPC regression this implies that
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Ez[J(θ̂|z)] ≈ J. This assumption will not hold in general, since the average conditional

parameter estimate is not generally equal to the parameter estimate for a completely pooled

model. However, it will hold approximately for parameters depending on the covariance

matrix such as latent regression coefficients and variances when the sample covariance ma-

trix is conditioned on z. For this reason, it is recommended, when studying covariance

structure parameters, to include the predictors in the first-step SEM analysis with direct

effects on all observed variables.

1.4. IPC Regression

In summary, possible differences in structural equation model parameter estimates can be

investigated by modeling a transformed data set t̂ as a function of z, for instance by OLS

linear regression. This suggests a three-step approach to exploring differences in any set of

parameters of a structural equation model with respect to a set of predictors:

1. Estimate the overall single-group model (introducing z as fixed covariates);

2. From the data and step 1, obtain the transformed data set t̂;

3. Regress the individual parameter contributions t̂ for the parameter(s) of interest on

the covariates.

2. MONTE CARLO EVALUATION OF IPC REGRESSION

2.1. Simulation Setup

To evaluate the finite-sample performance of the IPC regression proposed here, we set up a

small simulation study. The goal of this study is to demonstrate the results of the previous

section in a simple setup, while evaluating the extent to which IPC regression is able to

recover true between-group differences and provides valid inferences.
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Figure 1: Simulation model. Of interest is the true between-group difference in the factor
correlation, ρ12. Depending on the condition, there is also a difference of “dif.lambda”
in the size of the first loading. Between-group differences in the intercepts of y1 – y4 are
always present (not shown for clarity).

Figure 1 shows the two-factor model (1 degree of freedom) used for our Monte Carlo

simulations. A two-group population is generated, with all loadings equal to 1 in group 1,

and λ21 = λ42 = 1, λ32 = 1/2, and λ11 = 1 + dif.lambda in group 2. All error variances in

both groups equal var(εj) = 0.8. The intercepts of all observed variables equal 1 in group

1 and 2 in group 2. The latent variables η1 and η2 are standardized in both groups and their

correlation is set to 0.5 in group 1 and to 0.5 + true difference in group 2. We assume that

interest focuses on this true difference in latent correlation between groups. IPC regression

in this simple example will therefore correspond to a simple dummy variable regression.

The simulation conditions fully cross the following experimental factors:

• The true difference in between-group correlation: {-0.4, -0.2, -0.1, 0, +0.1, 0.2, 0.4}.

Note that the zero condition corresponds to no effect;

• The difference in loadings between groups: {0, 0.1, 0.2};

• The sample size per group: ng = {125, 250, 500, 1000}. The total sample size

therefore equaled n = 2ng = {250, 500, 1000, 2000}.
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For each of the 4 × 7 × 3 = 84 resulting conditions, n observations were drawn from a

multivariate normal distribution with mean vector and covariance matrix depending on the

group. IPC regresssion was then applied to the sample data, and this process was replicated

1000 times for each condition.

2.2. Simulation Results

Figure 2 plots the true difference in latent correlations in each condition against the dif-

ference estimated using the differences in individual parameter contributions. For easy

reference, the black 45-degree diagonal line corresponds to exact equality of the true and

estimated difference. Each point corresponds to a particular simulation condition, con-

nected with lines. The lines lie very close to the ideal of exact equality. When the true

difference is strongly positive or negative, it is slightly underestimated in absolute terms.

That is, the difference estimate is slightly biased towards zero for very large between group

differences in the latent correlation. The differences between the various conditions ob-

tained from crossing sample size with loading differences are hardly discernible. This

implies that the IPC difference procedure provides close to unbiased estimates under all of

these conditions.

Besides bias in the recovery of the true difference, coverage of 95% confidence intervals

on the IPC regression coefficient is also of interest. Figure 3 shows that coverage is close to

the nominal rate under all conditions (dotted reference line). The standard errors obtained

by simply regressing the IPC on the group dummy variable therefore provide accurate

confidence intervals under these conditions.

Inference may also involve hypothesis tests on the IPC regression coefficients. Table 1

shows the empirical Type-I error across replications, i.e. the proportion of rejections in the

conditions with a true difference of zero. Ideally this proportion should approach α = 0.05.

The Table shows that there is adequate control of Type-I error under the null hypothesis.
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Table 1: Empirical Type-I error rates for α = 0.05.
IPC

Diff. loading 0 0.1 0.2
No. obs.

125 0.048 0.050 0.035
250 0.050 0.067 0.046
500 0.049 0.044 0.057
1000 0.048 0.043 0.044

This holds true for the smaller sample sizes as well as when other parameters do differ

strongly over the groups.

When the true difference is not zero, the rejection rate is the empirical power of the test

to detect a difference in latent correlation. Figure 4 relates the power of the test to sample

size and the true size of the difference. For comparison with an established method, the

left-hand graph in Figure 4 corresponds to the power using MGSEM, and the right-hand

graph to the power using the IPC difference test. The overall median power using multiple

group structural equation modeling is 0.0095 higher than that using IPC difference testing.

For conditions with a small and medium absolute differences (bottom lines), MGSEM is

somewhat more powerful, but with large differences (top lines), IPC difference testing was

more powerful for smaller sample sizes.

Overall, in this simple setup the IPC regression method performed very well, demon-

strating the results of the previous section. IPC regression was able to recover true between-

group differences, and provided accurate confidence intervals and hypothesis tests. There

does not appear to be any loss of power relative to multiple-group SEM, which is an alter-

native method in this particular setup. In general, however, it will not always be possible

to compare the two methods, since IPC regression with multiple, possibly continuous, pre-

dictors do not have a corresponding MGSEM formulation.
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3. EXAMPLE APPLICATION: PREDICTING SURVEY MEASUREMENT ERROR

VARIANCE FROM RESPONDENT CHARACTERISTICS

Self-reported internet usage is often studied in relation to other variables (e.g. Hoffman and

Novak, 1998; Gross, 2004). As is well-known, when studying the relationship between

internet use and other variables, random measurement error may bias the results down-

wards. Worse, when random measurement error variance differs over groups of sex, age,

and education, true differences may not only be obscured, but spurious differences may be

erroneously found (Carroll et al., 2006). Therefore a question of high practical relevance

is whether measurement error variance in this survey question differs over social groups.

Survey methodologists pondering improvements of internet use measurement will, in addi-

tion, be interested in the mechanism behind such differences. Here I demonstrate how IPC

regression can be used to answer these questions.
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Table 2: Descriptive statistics for four years’ observations of log(hours of internet use at
work per week + 1); n = 2838. Covariates not shown.

Correlations
2008 2009 2010 2011 Mean sd Skew Kurtosis

inet_2008 1 0.721 1.029 1.298 0.600
inet_2009 0.668 1 0.743 1.048 1.283 0.543
inet_2010 0.644 0.701 1 0.766 1.073 1.229 0.315
inet_2011 0.609 0.661 0.729 1 0.790 1.094 1.181 0.189

Figure 5: The quasi-simplex model for four consecutive measurement error-prone mea-
surements of internet use in the LISS panel.

All data and code used to produce this example is available online from http://

goo.gl/fstgW.

I use 2838 observations from the LISS panel study, a simple random sample of Dutch

households. For more information on the design of the LISS study, see Scherpenzeel

(2011), and see http://lissdata.nl/ for original data and questionnaires. In this

longitudinal panel study design, respondents were asked how often they used the internet

in four consecutive years (2008 through 2011). The log-transform of the number of hours

per week the respondent claims to use the internet at work is taken to reduce skewness;

Table 2 shows descriptive statistics for these measures.

The first step is to formulate a structural equation model estimating measurement error

15

http://goo.gl/fstgW
http://goo.gl/fstgW
http://lissdata.nl/


Table 3: Results of fitting the quasi-simplex model with covariates to the LISS data. Inter-
cepts and fixed covariate main effects not shown. Note: Satorra-Bentler chi-square is 1.5
with 2 degrees of freedom (p = 0.476, scaling factor = 2.3). CFI = 1.000, RMSEA = 0.016,
n = 2838.

Latent regressions Variances
var(Error) β21 β32 β43 F1 F2 F3 F4

Est. 0.28 0.91 0.94 0.94 0.58 0.13 0.11 0.08
s.e. (0.01) (0.03) (0.02) (0.02) (0.02) (0.02) (0.01) (0.02)

Stand. 0.26 0.89 0.90 0.92 0.74 0.16 0.12 0.09

variance in the answers to the internet use question. Table 2 shows that the consecutive

measurements do not all correlate equally: measurements at a greater distance from each

other in time correlate less, so that the size of the correlations tapers off towards the lower-

left corner of the matrix. This is in line with the so-called “quasi-simplex” model, in which

internet use is not only measured with error, but the true internet use may also change over

time (Wiley and Wiley, 1970; Alwin and Krosnick, 1991; Alwin, 2007). Figure 5 shows the

single-group quasi-simplex model formulated for these data as a structural equation model.

Fitting this model to the LISS data with the maximum likelihood estimator yields a

well-fitting model, with estimates shown in Table 3. The model includes the direct ef-

fect of self-employment, age, age squared, sex, and education level on each of the four

observed variables. These regression coefficient estimates are omitted from Table 3 for

clarity. The error variance parameter is estimated at 0.28 ± 0.01. This error variance es-

timate corresponds to reliability estimates of respectively 0.86, 0.86, 0.87, and 0.88 at the

four consecutive years. The overall reliability is therefore high, but not perfect: estimates

of the relationship between internet use and social background will be affected.

Does the measurement error variance differ over respondents? Having completed step

one of fitting a single-group structural equation model, we now obtain each individual’s

parameter contribution to the error variance parameter estimate (step two): a t̂ score for

each respondent. Step three is then to perform a multiple linear regression of that score on
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Figure 6: Estimated conditional differences in measurement error variance by respondent
characteristics: effect plot for the regression of the IPC of the error variance parameter on
self-employed, year of birth, gender, and education.

respondent characteristics using standard routines. We employ the lm function in R, but lin-

ear regression routines such as those in Excel, SPSS, or Stata would serve equally well. The

characteristics investigated here are whether the respondent is self-employed or not (0/1),

the year of birth and its square, sex of the respondent, and education level – primary, lower

secondary (VMBO), middle secondary (MBO), upper secondary (HAVO/VWO), lower ter-

tiary (HBO), and higher tertiary (University).

The multiple linear regression estimates of the relationship between respondent charac-

teristics and error variance are shown as effect plots in Figure 6. The estimates themselves

can be found in the appendix. Figure 6 shows that, controlling for the other characteris-

tics, three of the four respondent characteristics (age, sex, and education) have a strong and

statistically significant effect on the error variance, and therefore on reliability, which is

inversely related to the error variance. The reliability of internet use self-reports increases

with age, decreases with education, and is lower for men than for women.
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To survey methodologists and those familiar with the literature on reliability of survey

questions, it may seem surprising that reliability would be lower for the young and those

of a higher education level. After all, cognitive functioning is higher for these groups

and expected to increase the reliability of answers (Alwin, 2007, chapter 10). There may,

however, be a simple explanation for this finding: the variance of measurement errors in

self-reports of the number of hours spent using the internet at work may simply be related

to internet use itself. If one does not use the internet at all, presumably there would be little

to no measurement error. A possible explanation for the finding that young and educated

respondents appear to provide lower-quality answers is that these respondents simply tend

not to be the kind of respondents who use the internet at work for zero hours per week.

The effects on error variance of these respondent characteristics may thus be mediated

by whether the respondent never uses the internet. A dummy variable is therefore con-

structed indicating whether respondents answered “zero hours” on all four occasions. I

then formulated a new mediation SEM model in which the error variance IPC is influenced

by the “all-zeroes” variable, and this variable, in turn, by the four covariates. This full me-

diation model fits the data well (χ2
SB = 11, df = 9, p = 0.276, RMSEA = 0.009; full results

are found in the Appendix). Thus, it appears that measurement error variance indeed differs

over these respondent characteristics, but only because respondents with certain traits tend

to be those who never use the internet, strongly reducing their error variance: the differ-

ence is 0.50±0.03, corresponding to a fully standardized effect of “all-zeroes” on the error

variance of 0.3.

4. DISCUSSION

This article suggested using IPC regression to explain differences in SEM parameter val-

ues over subgroups. IPC regression is a three-step method that opens up the possibility of
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explaining differences in measurement error variances with multiple explanatory variables,

and of performing a variance function-like regression for latent variables. While these are

important applications with direct benefits for applied researchers, I presented IPC regres-

sion in a more general framework that can be used to explain differences in other types of

SEM parameters as well.

IPC regression yields consistent estimates of the effect of predictors on parameters, and

has connections with established methods such as structural change tests and EPC’s and

MI’s. These results were demonstrated in a small Monte Carlo simulation. This simulation

study indicated that true parameter differences are accurately recovered by IPC regression,

although a slight bias towards zero was observed for extreme differences. Confidence in-

tervals and hypothesis tests appeared satisfactory, and no loss of power relative to multiple-

group SEM was observed. A comparison between IPC regression and MGSEM could only

be made due to the simple two-group, single-variable setup, however; IPC regressions with

multiple, possibly continuous, predictors do not have a corresponding MGSEM formula-

tion. An example application regressed the measurement error variance of self-reported

internet use on respondent characteristics, demonstrating the practical use of the method

for applied researchers. Data and program code are provided in the online Appendix.

IPC regression is, of course, by no means the only existing method to study heterogene-

ity in SEM parameters. There is overlap in certain fields of application with other methods:

when there is a single discrete predictor, MGSEM could also be applied; when there is a

single discrete predictor whose effect can be assumed random, multilevel SEM is an op-

tion (Muthén, 1989; Yuan and Bentler, 2007); when the parameter of interest is a (latent)

regression coefficient, SEM with interactions is available (Kenny and Judd, 1984; Bollen,

1995; Klein and Moosbrugger, 2000; Mooijaart and Bentler, 2010); when exploration of

possible subpopulations is of interest, structural change tests (Merkle and Zeileis, 2013) or

finite mixture (latent class) SEM (Dolan and van der Maas, 1998; Yuan and Bentler, 2010)
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may be appropriate; and when interest does not focus on one parameter, but on finding

subgroups that are maximally different on all parameters, recursive SEM partitioning may

be an alternative (Zeileis, Hothorn and Hornik, 2008; Aluja, Lamberti and Sanchez, 2013).

A clear advantage of IPC regression relative to methods that require multidimensional

numerical integration or recursive algorithms is its computational simplicity, although with

ever more powerful computers this advantage may lose relevance in the future. However,

the main attraction of the IPC framework presented here is that can in principle deal with

all of these situations. It can, furthermore, deal with situations that are not dealt with by

any of these methods, such as the example application discussed.

However, when one of these alternative methods is available and its assumptions are

met, IPC regression, being in essence a limited-information approach, is likely to provide

asymptotically less efficient estimates and less powerful tests. In the simulation study these

differences relative to MGSEM were found to be negligible, and with small samples IPC

regression was even found to be more powerful. Nevertheless, how IPC regression com-

pares to the above other methods in the special cases where these are appropriate remains

an open question. Two other important limitations of the present discussion are that only

SEM for continuous data was discussed, and that missing data remain to be dealt with.
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A. IPC REGRESSION AS A GENERALIZATION OF MI’S AND EPC’S IN MGSEM

The expected parameter change for freeing an equality-constrained parameter θg in group

g is defined as (Saris, Satorra and Sörbom, 1987):

EPCg = δg :=
(

∂2F

∂θg∂θ′g

)−1 (
∂F

θg

)
(7)

Note that the hessian with respect to the entire parameter vector is used, not just with respect

to the parameter of interest. This takes account (to some degree) of expected changes in

other, correlated, parameters due to freeing the constraint (Sörbom, 1989). The EPC’s can

be used to obtain an estimate of the difference between groups from multiple group SEM

as the difference of the EPC’s δg for each group (Bentler and Dijkstra, 1984): (θ̂ + δ2) −

(θ̂ + δ1) = δ2 − δ1.

Theorem 1. Formulate an MG-SEM with equality restrictions on all parameters. Order

groups by size of θg. Define t̂ as in (6). Then: δ2 − δ1 = ¯̂t2 − ¯̂t1.

Proof. The estimated difference between groups from MGSEM is: J−1
2 (∂F/∂θ2)−J−1

1 (∂F/∂θ1) =

J−1[(∂F/∂θ2) − (∂F/∂θ1)] because J1 = J2 since all parameters estimates are equal and

θ1 and θ2 play the same role in different groups: ∆θ1 = ∆θ1 and V1 = V2 so J1 = J2 = J .

Now, ∂F/∂θg = ∆′V [sg − σ(θg)] (e.g. Neudecker and Satorra, 1991). So (∂F/∂θ2)−

(∂F/∂θ1) = ∆′V [s2 − s1], again because σ(θ̂2) = σ(θ̂1). Since by definition sg = d̄g,

∆′V [s2 − s1] = ∆′V [d̄2 − d̄1], leading to δ2 − δ1 = J−1∆′V [d̄2 − d̄1] = ¯̂t2 − ¯̂t1.

The “modification index” (score test) for freeing this restriction is defined as the differ-

ence divided by the variance of the difference. Some standard software packages currently

use the inverse hessian J−1 as the variance. However, from Satorra (1989, section 5) it is

clear that this is only valid when asymptotically optimal (AO) estimation has been used.
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For non-AO estimation, such as pseudo-maximum likelihood or in the case of nonnor-

mally distributed y, a sandwich estimator is needed (Satorra, 1989). The resulting hypoth-

esis test is then equivalent to the so-called “generalized” score test (Boos, 1992). From

¯̂t2 − ¯̂t1 = J−1∆′V [d̄2 − d̄1], it is clear that a standard z-test performed on the difference

in IPC’s fulfills this requirement since it will automatically calculate the sandwich variance

var(δ2−δ1) = J−1∆′V var(d̄2− d̄1)V∆J−1. Thus, squared z-statistics from the regression

of t̂ on a group indicator can be interpreted as generalized score tests that are robust to

nonnormality.

Complex sampling can be taken into account as described in the text: by adjusting d

using the weights and estimating var(d̄2 − d̄1) incorporating clustering and stratification

identifiers (Muthén and Satorra, 1995). In general MG-SEM can be expected to yield the

most accurate results. However, since some SEM software does not correct the modifi-

cation indices for nonnormality or complex sampling, in cases of strong nonnormality or

complex sampling design effects, the proposed procedure may therefore actually be prefer-

able to MG-SEM.

B. INTERNET USE STUDY EXTENDED RESULTS

Extended results for the application of IPC regression to the internet use example are given

in this section.
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Table 4: Coefficient estimates for regression of the IPC of the error variance parameter on
respondent characteristics (n = 2838). The R2 is 0.03.

Estimate s.e. t-value p-value
(Intercept) 0.08 (0.09) 0.93 0.35
Self-employed 0.09 (0.06) 1.40 0.16
Year birth 6.71 (0.91) 7.34 0.00
Year birth2 -2.33 (0.91) -2.55 0.01
Female -0.08 (0.03) -2.42 0.02

Education
Primary school 0.00
VMBO 0.17 (0.09) 1.90 0.06
MBO 0.26 (0.09) 2.82 0.00
HAVO/VWO 0.18 (0.10) 1.83 0.07
HBO 0.29 (0.09) 3.21 0.00
University 0.37 (0.11) 3.54 0.00

Table 5: Full mediation SEM: error variance IPC (dependent variable), “all-zeroes” indi-
cator (mediator), and covariates (predictors). Satorra-Bentler chi-square is 11 with 9 de-
grees of freedom (p = 0.276, scaling correction = 0.953); CFI = 0.999, RMSEA = 0.009,
n = 2838.

Parameter Est. s.e. z
Regression coefficients
Error variance IPC on

All-zeroes -0.50 0.03 -17.0

All-zeroes on
Self-employed -0.06 0.03 -2.4
Year birth -10.07 0.40 -25.1
Year birth2 6.46 0.41 16.0
Female 0.10 0.02 6.2
Education: VMBO -0.13 0.04 -3.1
Education: MBO -0.31 0.04 -7.4
Education: HAVO/VWO -0.35 0.04 -7.8
Education: HBO -0.46 0.04 -11.3
Education: University -0.51 0.04 -11.4

Variance parameters
Error variance IPC 0.75 0.06 11.8
All-zeroes 0.17 0.00 50.1
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