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Abstract Latent class analysis (LCA) and latent profile analysis (LPA) are tech-
niques that aim to recover hidden groups from observed data. They are similar to
clustering techniques but more flexible because they are based on an explicit model
of the data, and allow you to account for the fact that the recovered groups are
uncertain. LCA and LPA are useful when you want to reduce a large number of
continuous (LPA) or categorical (LCA) variables to a few subgroups. They can also
help experimenters in situations where the treatment effect is different for different
people, but we do not know which people. This chapter explains how LPA and LCA
work, what assumptions are behind the techniques, and how you can use R to apply
them.

1 Introduction

Mixture modeling is the art of unscrambling eggs: it recovers hidden groups from
observed data. By making assumptions about what the hidden groups look like, it is
possible to get back at distributions within such groups, and to obtain the probability
that each person belongs to one of the groups. This is useful when:

• You measured one thing but were really interested in another. For example, how
students answer exam questions is indicative of whether or not they have mas-
tered the material, and how somebody you chat with online reacts to your mes-
sages is indicative of them being human or a bot;

• You fit a model but suspect that it may work differently for different people, and
you are interested in how. For example, when designing the information given
to vistors of a birdwatching site, putting up signs with just the Latin names of
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birds is helpful to some people and likely to annoy others. When investigating
the effect of putting up such signs it might be helpful to take this into account.

• You have a lot of different variables–too many to handle and interpret–and would
like to reduce these to a few easily interpretable groups. This is often done in
marketing where such groups are called “segments”.

There are many other uses of mixture modeling–too many to explain here. Suffice
to say that by understanding mixture modeling, you will make a start at understand-
ing a host of other statistical procedures that can be very useful, such as regression
mixture modeling, noncompliance in experiments, capture-recapture models, ran-
domized response, and many more. Moreover, mixture models are popular tools in
computer vision, such as face detection and hand gesture recognition (Yang and
Ahuja, 2001, e.g.). While these applications go beyond the scope of this chapter, it
may be helpful to keep in mind that they are extensions of the models we discuss
here.

Mixture modeling is a kind of latent variable modeling: it helps you to deal with
situations where some of the variables are unobserved. The specific thing about mix-
ture modeling is that is concerns latent variables that are discrete. You can think of
these as groups, “classes”, or “mixture components” – or as categories of an unob-
served nominal or ordinal variable. Depending on whether the observed variables
are continuous or categorical, mixture models have different names. These names,
together with the names of the other kinds of latent variable models, are shown
in Table 1, in which the rows correspond to continuous or discrete observed vari-
ables, and the columns to continuous or discrete latent variables. The left part of
the table concerns models in which the groups are based on differences in means,
and the right part concerns models in which the groups are based on differences
in regression-type coefficients. The two types of models dealt with in this chapter
are indicated in bold: “latent profile analysis”, which tries to recover hidden groups
based on the means of continuous observed variables, and “latent class analysis”,
which does the same for categorical variables1. Some of the other models in the
table are explained in other chapters.

Models for means Regression models
Latent Latent

Continuous Discrete Continuous Discrete
Observed
Continuous Factor analysis Latent profile analysis Random effects Regression mixture
Discrete Item response theory Latent class analysis Logistic ran. eff. Logistic reg. mix.

Table 1 Names of different kinds of latent variable models.

A different name for latent profile analysis is “gaussian (finite) mixture model”
and a different name for latent class analysis is “binomial (finite) mixture model”.
Its Bayesian version is popular in the computer science literature as “latent Dirichlet

1 Confusingly, sometimes latent class analysis is used as a broader term for mixture models.
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allocation”. Here we will stick to the terminology LCA/LPA, which is more com-
mon in the social sciences.

2 Mixtures of continuous variables: latent profile analysis

For this chapter, I measured the height of every human being on the planet2. I then
plotted the distribution of heights measured in Figure 1 (right-hand side).

Height (meters)

1.4 1.5 1.6 1.7 1.8 1.9 2.0

Height (meters)

1.4 1.5 1.6 1.7 1.8 1.9 2.0

Fig. 1 Peoples’ height. Left: observed distribution. Right: men and women separate, with the total
shown as a dotted line.

Interestingly, the height distribution on the left-hand side of Figure 1 is clearly
not normal. It has two peaks that look like they might come from two groups. Now,
you may have happened to guess what these groups are: women and men. If I had
recorded each person’s sex, I could confirm this by creating my picture separately
for men and women, as shown on the right-hand side of Figure 1. Women differ
in their height according to a normal distribution, as do men – it is just when you
combine the two that the non-normal picture emerges.

Unfortunately, I forgot to record peoples’ sex, and now it is too late. When you
perform an experiment this might happen to you too – or it might have happened to
the people who collected your data. For example, a usability test might omit peo-
ples’ handedness. Even more commonly, you may need information that is difficult
or impossible to get at directly, such as an attitude, feeling, or socially desirable be-
havior. In all of these cases you will be in a similar spot as I am with the height data:
I think there might be hidden groups, but I have not actually recorded them. Latent
class analysis is concerned precisely with recovering such hidden (“latent”) groups.

So how can we recover the picture on the right-hand side of Figure 1? One idea
is to split the sample on some guess about peoples’ sex and make histograms within
each guessed group. Unfortunately, it can be shown that this will never give the pic-
ture on the right. Without extra information, the only way to get exactly that picture
is to guess each person’s sex correctly, but the only information I have to guess sex
is height. And although a random man is likely to be taller than a random woman,

2 This is not true, but the rest of the chapter is.
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inevitably people like Siddiqa Parveen, who is currently the world’s tallest woman,
and Chandra Bahadur Dangi, the shortest man, will cause me count incorrectly, and
create a picture that is at least slightly different from the “true” one on the right3.

This is where mixture modeling comes to the rescue. Because it turns out that,
while we will never know each person’s sex for certain, we can still recover a picture
very close to that on the right-hand side of Figure 1. So we can discover the distri-
butions of height for men and women without ever having observed sex! Even more
astoundingly, as more and more data are gathered, we will more and more correctly
surmise what the distributions for men and women look like exactly.

There is a well-known saying that “there is no such thing as a free lunch”. I have
personally falsified this statement on several – sometimes delicious – occasions.
But while false in real life, in mathematics this statement is law. We will pay in
unverifiable assumptions–on this occasion the assumption that height is normally
distributed for men and women. This assumption is unverifiable from just the ob-
served data because the problem is exactly that we do not know sex. So when faced
with data that produce a picture like the one on the left-hand side of Figure 1, we
will need to simply assume that this picture was produced by mixing together two
perfect normal distributions, without us being able to check this assumption.

The corresponding mathematical model is

p(height) = Pr(man)Normal(µman,σman)+Pr(woman)Normal(µwoman,σwoman),
(1)

which I will write as

p(height) = π
X
1 Normal(µ1,σ1)+(1−π

X
1 )Normal(µ2,σ2). (2)

So we see that the the probability curve for height is made up of the weighted sum
of two normal curves4, which is exactly what the right-hand side of Figure 1 shows.
There are two reasons for writing πX

1 instead of Pr(man): first, when fitting a mix-
ture model, I can never be sure which of the “components” (classes) corresponds to
which sex. This is called the “label switching problem”. Actually, it is not really a
problem, but just means that X is a dummy variable that could be coded 1 = man,
2 = woman or vice versa. The second reason is that by using a symbol such as πX

1 , I
am indicating that this probability is an unknown parameter that I would like to esti-
mate from the data. Note that the superscript does not mean “to the power of” here,
but is just means “πX

1 is the probability that variable X takes on value 1”. This way
of writing equations to do with latent class analysis is very common in the literature
and especially useful with categorical data, as we will see in the next section.

Assuming that both men’s and women’s weights follow a normal distribution, the
problem is now to find the means and standard deviations of these distributions: the
within-class parameters (i.e. µ1, µ2, σ1, and σ2)5. The trick to doing that is in start-
ing with some initial starting guesses of the means and standard deviations. Based

3 Apparently, Ms. Parveen is 213.4 cm and Mr. Dangi is 48.3 cm.
4 As can be gleaned from the figures, by “normal curve” I mean the probability density function.
5 We also need to know the proportion of men/women πX

1 but I will ignore that for the moment.
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on these guesses we will assign a posterior probability of being a man or woman
to each person. These posterior probabilities are then used to update our guess of
the within-class parameters, which, in turn are used to update the posteriors, and so
on until nothing seems to change much anymore. This algorithm, the “expectation-
maximization” (EM) algorithm, is depicted in Figure 2. The online appendix con-
tains R code (simulation_height.R) that allows you to execute and play with this
algorithm.

Fig. 2 EM algorithm esti-
mating the distribution of
height for men and women
separately without knowing
peoples’ sex.

How can the posterior probabilities be obtained (step 1), when the problem is
exactly that we do not know sex? This is where our unverifiable assumption comes
in. Suppose that my current guess for the means and standard deviations of men and
women is given by the curves in Figure 3, and I observe that you are 1.7 meters
tall. What then is the posterior probability that you are a man? Figure 3 illustrates
that this posterior is easy to calculate. The overall probability density of observing
a person of 1.7 meters is 2.86, which we have assumed (in Equation 2) is just the
average of two numbers: the height of the normal curve for men plus that for women.
The picture shows that a height of 1.7m is much more likely if you are a man than if
you are a woman. In fact, the posterior is simply the part of the vertical line that is
made up by the normal curve for men which is 2.20/(2.20+ 0.66) = 2.20/2.86 ≈
0.77. So, if all I know is that you are 1.7 meters tall, then given the current guess
of normal curves for men and women, the posterior probability that you are a man
is about 0.77. Of course, the posterior probability that you are a woman is then just
1−0.77 = 0.23, since both probabilities sum to one.

Now for step (2) in Figure 2. I apply my earlier idea: guess people’s gender, and
then count their height towards men’s or women’s means and standard deviations,
depending on the guess. Recognizing that I am not 100% certain about any one per-
son’s sex, however, instead of guessing “man” or “woman”, I will use the posterior
probabilities. For example, if a 1.7 meters-tall person has a 0.77 posterior chance of
being a man and (therefore) a 0.23 chance of being a woman, I will add (0.77)(1.7)
to my estimate of the mean of men but also (0.23)(1.7) to that for women. So each
person’s observed value contributes mostly to the mean of the sex I guessed for



6 DL Oberski

Fig. 3 Tall woman or short
man? The probability density
of observing a person 1.7m
tall is a weighted sum of
that for men and women
separately.

them but also some to the other sex, depending on how strongly I believe they are a
man or woman. If I have no idea whether a person is man or woman, that is, when
the probility is 0.50:0.50, the height contributes equally to the guessed means of
both. In Figure 3 this occurs where the two curves cross, at about 1.65. By using the
posterior probabilities as weights, I obtain new guesses for the means and standard
deviations, which allow me to go back to step (1) and update the posteriors until
convergence. Note that whereas earlier in the section this idea of guessing then cal-
culating would not work, the assumptions allow me to get the posterior probabilities
necessary to perform this step.

This section has shown how you might recover hidden groups from observed
continuous data. By making assumptions about what the hidden groups look like, it
is possible to get back at distributions within such groups, and to obtain a posterior
probability that each person belongs to one of the groups. There are several software
packages that can do latent profile analysis, including Mplus (Muthén and Muthén,
2007) and Latent GOLD (Vermunt and Magidson, 2013a). In R, this model could be
fitted using the mclust library (Fraley and Raftery, 1999):

library(mclust)
height_fit_mclust <- Mclust(height)
summary(height_fit_mclust, parameters = TRUE)

As mentioned above, you can play with this example using the online appendix
(simulation_height.R).

With just one variable, we needed to pay a hefty price for this wonderful result:
an unverifiable assumption. It is possible to do better by incorporating more than
one variable at the same time; for example, not just height but also estrogen level.
Both are imperfect indicators of sex but using them together allows me to guess the
hidden group better. The next section gives an example of modeling with several
categorical variables.
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3 Mixtures of categorical variables: latent class analysis

Latent class analysis (LCA) is similar to latent profile analysis: it also tries to recover
hidden groups. The difference, as you can see in Table 1, is that LCA deals with cat-
egorical observed variables. One of the most common uses of latent class analysis is
to divide the observations (cases) into mutually exclusive groups or “classes”, such
that the observed variables are unrelated to each other within each class. This tends
to create classes in which the observations are similar to each other but different
from those in other classes. In other words, instead of assuming that the variables
follow any particular distribution within the classes as was done above, LCA lets
the variables follow any distribution, as long as they are unrelated to each other
(independent) within classes.

Typically, the researcher (1) determines the “best” number of latent classes K
that sufficiently explain the observed data; and (2) summarizes the results. At times,
researchers are also interested in (3) relating the most likely class membership to
some external variables not used in the model. When performing this last task, how-
ever, the researcher should be very careful to account for the uncertainty in each
observation’s class membership: failure to do so will result in biased estimates of
the class membership prediction6.

Suppose there are three observed variables A, B, and C, all three categorical with
six categories. The model for traditional latent class analysis is then typically written
as

π
ABC
abc = ∑

x
π

X
x π

A|X
a π

B|X
b π

C|X
c , (3)

where X is the latent class variable, πX
x the size of class x and, for example, π

A|X
a

is the probability that variable A takes on the value a in the latent class x. Equa-
tion 3 describes the probability of seeing any combination of values a, b, and c as
depending solely on the differences in latent class sizes (πX

x ) combined with how
different these classes are in terms of the observed variables. Within the classes,
the variables are unrelated (“conditionally independent”), which is reflected in the
product π

A|X
a π

B|X
b π

C|X
c .

Let’s apply LCA as an exploratory technique to the SuSScale example data with
3 time points. As a reminder, some example answers to the 10 questions in the ques-
tionnaire are shown in Table 2. These 10 variables are moderately related with an
average correlation of 0.4. Our goal is to find K classes such that these relation-
ships are small within the classes, where we still need to find out the best number of
classes K.

Because the data are categorical, we apply a latent class model for polytomous
variables to the 258 observations. This is done using the poLCA package in R (Linzer
and Lewis, 2011; R Core Team, 2012):

library(poLCA)

6 For more information on how exactly to properly perform such an analysis see (Bakk et al.,
2013).
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Table 2 Example data from
the SUS questionnaire.

Time V01 V02 V03 V04 V05 V06 V07 V08 V09 V10
1 1 4 3 5 4 3 4 3 2 2 3

87 2 4 5 3 5 5 5 5 4 5 5
173 3 3 3 2 4 3 2 3 2 2 3

2 1 3 2 3 3 3 3 4 3 3 2
... ... ... ... ... ... ... ... ... ... ... ...

Table 3 Fit of the latent
class models with increasing
numbers of classes. The
lowest AIC and BIC are
shown in boldface.

# Classes Log-likelihood AIC BIC
1 -3753.32 7614.64 7806.50
2 -3441.70 7103.39 7494.22
3 -3327.72 6987.45 7577.24
4 -3245.73 6935.46 7724.22

f <- as.matrix(scale[,grep("^V\\d+$", names(scale))]) ~ Time
M4 <- poLCA(f, scale, nclass=4, nrep=50)

Here, the first command loads the library; the second command constructs an R
formula with all of the observed indicators V01–V10 on the left-hand side, and
the covariate Time on the right-hand side to control for any time effects. The last
command fits the model with four classes. The nrep=50 argument tells poLCA to try
out 50 different starting values so that we are certain that the best solution has been
found. This is always recommended when performing latent class analysis.

We fit the model for a successively increasing number of classes, up to four:
K = {1,2,3,4}. With one class, the model in Equation 3 simply says the variables
are independent. Obviously if this one-class model fits the data well we are done
already since there are no relationships between the variables in that case. The first
order of business is therefore to evaluate how well the latent class models with
different numbers of classes fit the data and to select one of them. There are many
measures of model fit, the most common ones being the AIC (“Akaike information
criterion”) and BIC (“Bayesian information criterion”). These are shown for our
four models in Table 3.

In Table 3, lower values of the fit measures are better. The best model appears
to be the four-class model. We therefore pick that model as our preferred solution.
This procedure of choosing the lowest BIC is the most used in LCA. However, this
is an exploratory method: just as in exploratory factor analysis, it is therefore often
also possible to pick a lower or a higher number of classes based on substantive
concerns or ease of interpretation. We might only be interested in finding a small
number of broad classes, for instance, and ignore any remaining distinctions within
these classes.

With the argument graphs=TRUE, poLCA produces graphs that show the estimated
distributions of the observed variables in each latent class. These graphs can be very
useful with fewer variables of nominal measurement level, but with ten variables
having six categories each, this output is rather hard to read. Instead, I created a
so-called “profile plot” for these variables in Figure 5, which displays the estimated
class means instead of their entire distribution. This plot is usually reserved for
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Fig. 4 Output of poLCA for
the four-class model showing
the estimated distribution of
the ten observed variables
V01–V10 within each of the
four classes. The profile plot
is easier to read.

Class 1: population share = 0.324
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Class 2: population share = 0.168
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Class 3: population share = 0.28
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Class 4: population share = 0.228
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Fig. 5 “Profile plot”: estimated means of the 10 observed variables in the SuSScale data within
each of the K classes for K = {1,2,3,4}.

continuous variables, but with our six-point ordinal variables it still makes sense to
display their means.

Figure 5 shows the profile plots for all four fitted models. In a profile plot, there
is one line for each class. The lines represent the estimated mean of the observed
variable on the x-axis within that class. So the profile plot for the two-class solu-
tion shows that the two classes separate people who give high scores on all of the
questions (class 2) from people who give low scores on all of them (class 1). Note
that the class numbers or “labels” are arbitrary. In the three-class solution, there is
also a class with low scores on all of the variables (class 1). The other two classes
both have high scores on the first five variables but are different from each other
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regarding the last five variables: class 2 also has high scores on these whereas class
3 has low scores. The four-class solution, finally, has “overall high” (class 2) and
“overall low” (class 3) classes, as well as “V01–V05 but not V06–V10” (class 4)
and its opposite (class 1).

The pattern found in the four-class solution is easy to understand when we think
back to the factor solution from earlier chapters. There, two factors were found
that separated the first five from the last five factors. With two factors, there are
four possible combinations of high and low, which correspond exactly to the four
profiles found in the four-class solution. The reason for this, of course, is that these
artificial data were generated using a computer from the two factors model. What
we see here is therefore simply a different perspective on the same conclusions. It
also demonstrates the exploratory power of LCA, since any number of dimensions
could haven been found, and there is no need for normality assumptions as there is
in factor analysis.

Although the four-class solution is the “best” solution, this does not necessarily
mean that it is a good solution. In particular, if our local independence model is to
provide an adequate explanation of the observed data, the relationships between the
indicators after controlling for class membership should be small. An intuitive way
of thinking about this is that the scatterplot between two indicators should show a
relationship before conditioning on the class membership, but none after this condi-
tioning.

Figure 6 demonstrates this with two example indicators, V01 and V10. To make
the points easier to see in the Figure they have been “jittered” (moved a bit). The top
part of Figure 6 is simply a scatterplot of V01 and V10 over all 258 observations.
The shape of the points here corresponds to the most likely class membership of that
point. For example, the upper-rightmost point is a triangle to indicate that its most
likely class is the “overall high” class (class 2). It can be seen that there is a moderate
relationship between these two indicators before accounting for the classes, with a
linear correlation of 0.30. The bottom part of Figure 6 splits up the same scatterplot
by class, so that each graph contains only points with a particular shape. It can be
seen that within each of the classes the relationship is almost non-existent. This
is exactly what conditional independence means. Therefore the model fits well to
the data for these two indicators. Graphs like Figure 6 only make sense when the
observed score (1–6 in our case) is approximately of interval level. For nominal
variables, a different kind of fit measure is therefore necessary. One such measure
is the “bivariate residual” (BVR), the chi-square in the residual cross-table between
two indicators. At the time of writing, the BVR is not available in R but can be
obtained from commercial software such as Latent GOLD (Vermunt and Magidson,
2013b).

In this example we applied LCA as an exploratory method to artificial data that
were generated according to a linear factor model. The profiles then recuperate the
generated structure. In real data, there will often be additional classes. For example,
if some respondents tend to use the extreme points of a scale (“extreme response
style”) while others use the whole scale, this will lead to an additional class in which
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Fig. 6 Top graph: the data with observed correlation 0.30 are modeled as a “mixture” of four
classes (circles, triangles, pluses, and crosses). Bottom graph: these classes are chosen such that
the correlation between the variables is minimal within them.

the extremes are more likely to be chosen. Because this is a nonlinear effect, such a
finding is not possible with linear models such as factor analysis.

4 Other uses of latent class/profile analysis

While the traditional use of LCA/LPA is as an exploratory technique, latent class
models can also be seen as a very general kind of latent variable modeling. La-
tent class models are then a type of structural equation modeling, factor analysis,
or random effects (hierarchical/multilevel) modeling in which the latent variable is
discrete rather than continuous (Skrondal and Rabe-Hesketh, 2004). The advantage
of a discrete latent variable is that the distribution of the latent variable is estimated
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from the data rather than assumed to have some parametric form, such as a nor-
mal distribution. Hence, several special cases of latent class models are sometimes
called “nonparametric”. The term “nonparametric” here does not mean that there
are no parameters or assumptions; rather, it means that the distribution of the latent
variables is estimated. In fact, the relaxation of assumptions about the distribution
of the latent variables usually means that there are more parameters to estimate, and
that some of the assumptions, such as local independence rather than just uncorre-
latedness, become necessary to identify parts of the model.

Mixture models are also useful for analyzing experimental data. For example,
when the effect of the treatment is thought to be different in different groups, but
these groups are not directly observed: in this case “regression mixture modeling”
can be used. In R, the flexmix package (Gruen et al., 2013) is especially useful for
regression mixture modeling.

Another situation that often occurs in randomized experiments with people is that
the people do not do what they are supposed to do. For example, a patient assigned
to take a pill might neglect taking it, or a person receiving different versions of a
website based on cookies might have blocking software installed that prevents the
assigned version from coming up. When participants do not follow the randomly as-
signed treatment regime, this is called “noncompliance”. For people in the treatment
group, we can often see whether they did or did not actually receive the treatment.
But simply deleting the other subjects would break the randomization, causing a
selection effect. Therefore these people should be compared, not with the entire
group of controls, but with a hidden subgroup of controls who would have taken the
treatment if they had been assigned to it. The fact that we cannot observe this hy-
pothetical hidden group leads to a latent class (mixture) model, and methods to deal
with noncompliance in randomized experiments are special cases of the models dis-
cussed here. The Latent GOLD software contains several examples demonstrating
how to deal with noncompliance. In R, a package containing some basic noncompli-
ance functionality is experiment (Imai, 2013).

5 Further references

An accessible and short introduction to latent class analysis and its variations is
given by Vermunt and Magidson (2004). More background information and details
on the various types of models that can be fitted is found in Hagenaars and Mc-
Cutcheon (2002). A comprehensive introduction-level textbook is Collins and Lanza
(2013). The manuals and examples of software that can fit these models, especially
Mplus and Latent GOLD, are another great source of information. Some examples
of applications of LCA and LPA to human-computer interaction are Nagygyörgy
et al. (2013) and Hussain et al. (2015). For an application to computer detection of
human skin color, see Yang and Ahuja (2001, Ch. 4).
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