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The “combination of uniform and shifted binomial” (cub) model is a dis-
tribution for ordinal variables that has received considerable recent attention
and specialized development. This article notes that the cub model is a spe-
cial case of the well-known loglinear latent class model, an observation that
is useful for two reasons. First, we show how it can be used to estimate
the cub model in familiar standard software such as Mplus or Latent gold.
Second, the mathematical equivalence of cub with this well-known model
and its correspondingly long history allows well-known results to be applied
straightforwardly, subsuming a wide range of specialized recent developments
of cub and suggesting several possibly useful future ones. Thus, the observa-
tion that cub and its extensions are restricted loglinear latent class models
should be useful to both applied practitioners and methodologists.

1. Introduction

Ordinal variables are commonly found across a range of disciplines. They are especially
common in the social sciences where they typically represent respondents’ answers to
questions in questionnaires–other examples being peoples’ education levels, business size
categories, disease progression levels, and so on. When such variables are used as out-
comes to be predicted, their discrete and ordered nature must be taken into account in
some manner. To do this, a range of models exist (see Agresti, 2002, for an overview);
Piccolo (2003) and D’Elia and Piccolo (2005) introduced one such model, which they
called the “combination of uniform and shifted binomial” (cub) model.
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For an observed ordinal variable Y with K categories, the probability of observing
Y = k under the cub model is a mixture of two components, or, equivalently, of two
classes of a discrete latent variable X:

P (Y = k) = πP (Y = k|X = 1) + (1− π)P (Y = k|X = 2). (1)

The first class (mixture component), X = 1, follows the “shifted binomial”,

P (Y = k|X = 1) =

(
K − 1

k − 1

)
ξK−k(1− ξ)k−1 (2)

and the second, X = 2, a uniform distribution over the K categories,

P (Y = k|X = 2) =
1

K
. (3)

Thus, the cub model has two parameters: π and ξ. Since the latent class variable X
is often referred to in this literature as the “uncertainty” component, the proportion
of observations in this class, P(X = 2) = 1 − π, is referred to as “uncertainty”. The ξ
parameter is then referred to as the “feeling”. Whether this terminology is substantively
warranted will depend on the application and is beyond the scope of this article.

As also noted by Tutz et al. (2014, p. 5), the cub model bears resemblance to a more
general class of mixture models, in which the conditional probabilities can be modeled
using standard models for ordinal variables familiar from GLM modeling (Agresti, 2002).
Many such models can be subsumed in the loglinear latent class model (lcm),

P (Y = k|X = x) =
exp(ηk|x)∑K

k′=1 exp(ηk′|x)
, (4)

where ηk|x is the linear predictor for category k in class x. The uniform distribution in
class 2 is obtained by setting ηk|2 = 0; without covariates, ηk|1 would simply be an inter-
cept parameter for each category. However, while the cub model is identifiable without
covariates (Iannario, 2010), this more general formulation is not. Underidentification
can be easily verified by noting that the unrestricted model has K parameters but only
K − 1 unique data patterns to estimate them from, leading to −1 degree of freedom.
Tutz et al. (2014) did not impose further restrictions on ηk|1 but introduced covariates
instead to resolve the identification issue.

The advantage of the approach suggested by Tutz et al. (2014) is that a standard mod-
eling framework is used that allows practitioners to use standard software. Furthermore,
technical development of the model is greatly facilitated by the ready availability of ex-
isting results on issues such as identification, variance estimation, model fit evaluation,
and so on. A disadvantage of this approach, however, is that it is not mathematically
equivalent to the cub model and non-identifiable without covariates or other additional
data. This paper shows that this last disadvantage can be removed by imposing certain
restrictions on the standard loglinear latent class model in Equation 4. These restric-
tions lead to a mathematically equivalent reparameterization of the cub model that can
readily be estimated in standard software such as Mplus (Muthén and Muthén, 2012)
or Latent gold (Vermunt and Magidson, 2013b,a).
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2. Equivalence of loglinear lcm and cub models

The loglinear latent class model in Equation 4 is an less restrictive version of the cub
model. This section demonstrates that fact by deriving the restrictions necessary to
obtain a model that is mathematically equivalent to the cub model.

First, as remarked above, the uniform distribution in class 2 is obtained simply by
restricting all linear predictors in that class to zero, ηk|2 = 0. The “shifted binomial” dis-
tribution in class 1, meanwhile, is obtained by setting the linear predictors proportional
to the category number:

ηk|1 = β(k − 1) + ln

(
K − 1

k − 1

)
, (5)

where k is the category number, the final term is a normalization constant that does
not depend on unknown parameters, and β is a reparameterization of the cub location
parameter ξ:

ξ =
1

1 + exp(β)
. (6)

In some software it is also possible to specify a multiplicative offset wk (“cell weight”),
i.e. a factor by which exp(ηk|x) is multiplied (e.g. Vermunt and Magidson, 2013b, p.

130–1); in that case the multiplicative offset is simply wk =
(
K−1
k−1
)
.

2.1. Derivation

The derivation of the equivalence of cub and lcm starts by observing that setting the
log-probability in the cub model’s “shifted binomial” class 1 equal to a linear function
of the category number k,

lnP (Y = k|X = 1) = ln

(
K − 1

k − 1

)
+ (K − k) ln ξ + (k − 1) ln(1− ξ)

= ak + βk,

(7)

can always be solved exactly for ak and β:

ak = ln

(
K − 1

k − 1

)
− (K − 1) ln(ξ), (8)

β = ln

(
1− ξ
ξ

)
. (9)

Note that the linear predictor can also be interpreted as the log-odds ratio of category k
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versus a reference category. That is, choosing the first category as a reference (η1|1 = 0),

ηk|1 = ln

[
P (Y = k|X = x)

P (Y = 1|X = x)

]
= lnP (Y = k|X = x)− lnP (Y = 1|X = x)

= (ak + βk)− (a1 + β)

= β(k − 1) + ln

(
K − 1

k − 1

)
.

(10)

This proves that the restricted linear predictor in Equation 5 combined with the standard
loglinear latent class model in Equation 4 is indeed mathematically equivalent to the cub
model.

2.2. Example

Consider a hypothetical observed variable with four categories. To estimate the cub
model without covariates using loglinear lcm, set

η1|1 = 0 η2|1 = β + 1.0986 η3|1 = 2β + 1.0986 η4|1 = 3β

η1|2 = 0 η2|2 = 0 η3|2 = 0 η4|2 = 0.

Figure 1 demonstrates the implementation of the loglinear latent class specification of
cub models in two standard software packages. In Mplus syntax, shown on the left-
hand side of Figure 1, this is achieved by creating an additional parameter with the NEW

command (note that Mplus uses the last category as the reference). Latent gold allows
the “ordinal” specification as well as a the multiplicative offset wk (~wei), leading to
the syntax on the right-hand side of Figure 1. For practitioners who wish to apply the
syntax in Figure 1, some common values of the normalization constants for different
numbers of categories are given in Appendix B.

3. Extensions of the cub model

Recently, a number of extensions to the cub model have been proposed. The following
of these extensions are directly subsumed by the approach suggested here:

• Standard errors for cub via analytic information (Piccolo, 2006);

• cub models with covariates (Iannario, 2008);

• Hierarchical (random effect) cub models (Iannario, 2012a);

• cub with “shelter choice” (Iannario, 2012b);

• Latent class-cub models (Grilli et al., 2014);

• Design-based inference for cub in complex samples (Gambacorta et al., 2014).

For instance, lcm with covariates (Dayton and Macready, 1988; Huang and Bandeen-
Roche, 2004) is already a standard feature of such software; the “shelter choice” yields an
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Mplus syntax

VARIABLE:

NAMES ARE Y;

NOMINAL = Y;

CLASSES = c (2);

ANALYSIS: TYPE = MIXTURE;

MODEL:

%C#1% ! Uniform

[ Y#1@0 Y#2@0 Y#3@0 ];

%C#2% ! Shifted Binomial

[ Y#1 ] (eta11) ;

[ Y#2 ] (eta21) ;

[ Y#3 ] (eta31) ;

MODEL CONSTRAINT:

NEW(b);

eta11 = - 3*b;

eta21 = 1.0986 - 2*b;

eta31 = 1.0986 - b;

Latent gold syntax

variables

dependent Y ordinal;

latent Cluster nominal 2 coding=1;

equations

Cluster <- 1;

Y <- (a~wei) 1 | Cluster + (b) Cluster;

a[2]={1 3 3 1};

Figure 1: cub model for K = 4 formulated in Mplus and Latent gold syntax.
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additional latent class in which a particular response is given with certainty; the lcm-cub
model yields an additional discrete latent variable (e.g. Hagenaars, 1990); design-based
inference for complex sampling in latent class models is typically achieved using pseudo-
ML (Skinner et al., 1989; Patterson et al., 2002; Asparouhov, 2005); and hierarchical
models as well as analytic standard errors are available in the literature. Some examples
of formulating these extended cub models in Latent gold are given in Appendix A.

We did not study the following developments of cub in sufficient detail to evaluate
whether these are also mathematically equivalent or directly implementable in standard
software:

• Bivariate (Corduas, 2011) or multivariate cub using copulas (Andreis and Ferrari,
2013);

• The fit measures and residuals proposed by Iannario (2009); Di Iorio and Iannario
(2012);

• Overdispersed cub model (Iannario, 2013, 2014);

• “Nonlinear” cub model (Manisera and Zuccolotto, 2014).

However, other solutions to the issues of multivariate modeling, overdispersion, and
model fit evaluation than those proposed for cub are readily available. For example,
multivariate distributions with a wide range of dependencies can easily be modeled
using loglinear models (Hagenaars, 1988), and fit measures and residuals for categorical
lcm are available, including full- and limited information omnibus tests (e.g. Maydeu-
Olivares and Joe, 2005), bivariate residuals (Vermunt and Magidson, 2013b; Oberski
et al., 2013), score tests (Oberski et al., 2013), expected parameter change (Oberski and
Vermunt, 2014), and sensitivity measures (Oberski and Vermunt, 2013; Oberski et al.,
frth).

4. Conclusion

This article showed that the cub model, for which specialized software and developments
have recently been proposed, is a restricted loglinear latent class model that falls within
the standard framework adopted by commonly used software such as Mplus and Latent
gold. This observation should prove useful for practitioners who wish to apply the cub
model, as well as for methodologists who are seeking to extend it. Some work remains
concerning cub extensions whose equivalence is not obvious (to the authors), but for
which other solutions may be available.

The scope of this article was limited to showing that cub is an lcm that has been
highly restricted. It would not be surprising then to find in empirical applications
that these restrictions lead to rejection of the cub model. Moreover, since, without
covariates, the identification of the latent classes X = 1 and X = 2 depends entirely
on these restrictions (Iannario, 2010), their interpretation as representing a substantive
“feeling” and “uncertainty” component may not always be tenable. In such cases, the
more flexible model of Tutz et al. (2014) or a multiple indicator approach (e.g. Oberski,
frth) may be more reasonable. Discovering the cases in which this may be an issue
remains a topic for further study, however.
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A. Examples of cub extensions in Latent gold

Please see the online appendix for this program input and data.
CUP-adjacent categories (Tutz et al., 2014)

variables

dependent fltdpr ordinal;

independent marsts nominal, ppltrst, agea, hinctnta;

latent Cluster nominal 2 coding=1;

equations

Cluster <- 1;

fltdpr <- (a) 1 | Cluster + ppltrst Cluster + marsts Cluster +

agea Cluster + hinctnta Cluster;

a[1,]=0;

cub regression with complex sampling weights (Gambacorta et al., 2014)
variables

dependent fltdpr ordinal;

samplingweight dweight;

independent marsts nominal, ppltrst, agea, hinctnta;

latent Cluster nominal 2 coding=1;

equations

Cluster <- 1;

fltdpr <- (a~wei) 1 | Cluster + Cluster + ppltrst Cluster + marsts Cluster +

agea Cluster + hinctnta Cluster;

a[2]={1 3 3 1};

Shelter option (Iannario, 2012b)
variables

dependent fltdpr ordinal;

samplingweight dweight;

independent ppltrst;

latent Cluster nominal 3 coding=1; // Third class is shelter

equations

Cluster <- 1;

fltdpr <- (a~wei) 1 | Cluster + (b0) Cluster + (b1) ppltrst Cluster +

(s~nom) Cluster ; // Shelter option

a[2]={1 3 3 1};

b0[1,2]=0;

b1[1,2]=0;

// Shelter option is category 1

s[1,]=0;

s[1,4]=-99;

s[1,5]=-99;

s[1,6]=-99;
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B. Normalization constants for different numbers of
categories

Table 1 gives the normalization constant

ln

(
K − 1

k − 1

)
from Equation 5 needed for some commonly found numbers of categories.

Number of categories K

k 3 4 5 6 7 8 9 10 11

1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

2 0.6931 1.0986 1.3863 1.6094 1.7918 1.9459 2.0794 2.1972 2.3026

3 0.0000 1.0986 1.7918 2.3026 2.7081 3.0445 3.3322 3.5835 3.8067

4 0.0000 1.3863 2.3026 2.9957 3.5553 4.0254 4.4308 4.7875

5 0.0000 1.6094 2.7081 3.5553 4.2485 4.8363 5.3471

6 0.0000 1.7918 3.0445 4.0254 4.8363 5.5294

7 0.0000 1.9459 3.3322 4.4308 5.3471

8 0.0000 2.0794 3.5835 4.7875

9 0.0000 2.1972 3.8067

10 0.0000 2.3026

11 0.0000

Table 1: The normalization constant for different numbers of categories K.


