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Abstract

Administrative register data are increasingly used worldwide to replace or supple-
ment the census, and are thought to provide a cost-effective opportunity for longitudinal
full-population data analysis in the social sciences. They are also frequently used as “val-
idation data” to study measurement error in survey questions. In spite of quality control
procedures, however, there are strong indications that administrative register data can
themselves contain considerable measurement error. Moreover, typically the error pro-
cess does not conform to classical measurement error models. Such errors negate the
potential usefulness of administrative data, making it essential to evaluate their extent.
This chapter discusses latent variable modeling as a way to estimate measurement error
in administrative data by combining error-prone administrative data with an error-prone
survey. To demonstrate the approach, a latent class model is applied to linked register-
survey residence data from the municipality of Amsterdam.

1 Introduction
Administrative data obtained from government registers provide a wealth of potential for the
social sciences (Entwisle and Elias, 2013). Collected during the normal course of public
administration, for example to tax, keep track of car ownership, pay welfare benefits, or send
out calls to vote in elections (Wallgren and Wallgren, 2007), registers can be used by survey
researchers as direct variables of interest, or as auxiliaries in survey sampling, nonresponse
adjustments, or validation studies. Such registers are often available longitudinally and for
the entire population – a highly attractive combination for researchers, especially when linked
to purpose-designed surveys.

While administrative registers have many redeeming qualities for survey researchers, the
fact that they have been collected for administration not research can be a disadvantage. In

∗Thanks are due to Robert Selten from the O+S research service of the municipality of Amsterdam for pro-
viding the tabular data and for clarifying the design of the Sportmonitor 2013 survey. This work was supported
by the Netherlands Organization for Scientific Research (NWO) [Veni grant number 451-14-017].
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particular, administrative registers may contain considerable measurement errors, including
definition, reporting, timing, processing, editing, linkage, and coverage errors (Bakker, 2009;
Groen, 2012). For example, Gomez and Glaser (2006) found a staggering 83.3% of Native
Americans and 29.9% of Hispanics were misclassified as a different race in U.S. registers, and
epidemiologists have long preferred “gold standard” autopsy data to hospital cause-of-death
registers (e.g. Maudsley and Williams, 1996). Since measurement error is well-known to
severely distort analyses of substantive interest (Fuller, 1987; Carroll et al., 2006), estimating
the extent of such errors is essential to making administrative register data useful for social
research.

Some validation studies of administrative registers exist, but often use surveys as the gold
standard (e.g. Gomez and Glaser, 2006; Groen, 2012). At the same time, survey methodol-
ogists use administrative registers as a gold standard to validate surveys (e.g. Kreuter et al.,
2010; West and Olson, 2010). It therefore seems likely that both sources are error-prone. But
how can we estimate the extent of measurement errors in both administrative register and
survey answers when neither are perfect?

This chapter demonstrates one approach to doing so: latent variable modeling. As an
example it estimates the amount of classification error in survey and administrative measures
of the neighborhood of residence, an important modeling and adjustment variable. From
a combination of two survey measures of the neighborhood and one administrative register
measure, a latent class model is built that accounts for survey mode effects as well as local
dependencies between the survey measures. This allows estimation of error rates in all three
measures without assuming any one of them to be perfect in advance.

Latent variable modeling has been applied to estimating measurement error in continu-
ous administrative variables by Bakker (2012), Scholtus and Bakker (2013) and Oberski et al.
(2013a) using “multitrait-multimethod” (MTMM) designs. Pavlopoulos and Vermunt (2013)
used a longitudinal latent class (hidden Markov) approach to estimate misclassification in
employment status registers. This previous work has not investigated, however, how misclas-
sification may be estimated in nominal administrative and survey variables without longitu-
dinal information. Moreover, the present application accounts for mode of data collection
effects in the survey measures. Modeling these mode effects allow for the identification of
both random classification errors and method effects without the need for multiple “traits”
(true values). It could therefore be termed a “single-trait-multi-method” (STMM) approach.

The following section describes the data on neighborhood of residence obtained from
a survey and an important Dutch official administrative register. Section 3 then details the
latent class model built to estimate classification error rates in these measures. The resulting
estimates are described in Section 4, after which Section 5 concludes.
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Figure 1: Neighborhoods of residence (“stadsdeel”) in Amsterdam, The Netherlands.

2 Administrative and survey measures of neighborhood
In March and April of 2013, the municipality of Amsterdam, The Netherlands, performed
its biannual survey on sports participation, the “Sportmonitor”1, among the population of
approximately 711,000 residents aged 6–74. A random sample of 20,579 households was
taken from the municipal register, stratified by neighborhood, ethnicity, and age group (< 18
or 18+). The data collection was a sequential mixed mode design: first, all sampled persons
in the households received a personalized letter in the regular mail with the official logo of
the municipality, requesting participation in an online web survey but leaving the option of
returning a paper form, which a small (3%) percentage of respondents returned. A sample of
nonrespondents were followed up by CATI if phone number was available or visited at their
residence and interviewed using CAPI otherwise. This led to a mix of 59% web or paper-
and-pencil mode, 30% CATI, and 11% CAPI. The final number of respondents was 4,266,
making the response rate 4,266/20,579 = 20.7% (AAPOR RR1 and RR2).

Our target variable of interest is the neighborhood of residence or “stadsdeel”, a key vari-
able in data analysis for public policies, for various “big data” services linking neighborhood
to other official statistics, and for sample survey design. Amsterdam contains eight such
neighborhoods, of which one is the port, a non-residential area. These are shown in Figure 1.
Figure 2 shows the two survey questions about neighborhood. The question first directly asks
the respondent their neighborhood of residence, while the second asks it indirectly through
the postcode. Of note is the fact that the survey asks the postcode at a high level of detail: it
is common for surveys to ask only the first four digits rather than all six. This may have con-
tributed to the higher number of missing values in this variable – 7.7% of values are missing
in the second question while this is only 0.9% in the first.

While the survey gathered two separate measures of the respondent’s neighborhood, the

1https://www.amsterdam.nl/publish/pages/422998/sportmonitor_2013_def.
pdf
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[Survey: direct question]. In which neighborhood do you live?

1. Centrum
2. Westpoort
3. West
4. Nieuw-West
5. Zuid
6. Oost
7. Noord
8. Zuidoost
9. Don’t know

[Survey: postcode]. What is your postcode? [ ]

Figure 2: Formulation of the 2013 Sportmonitor survey questions asking neighborhood of
residence. The postcode (ZIP code) is asked at the most detailed level possible.

municipality also has this information in its administrative register (“GBA”). The Dutch mu-
nicipal register is one of the bases of the Dutch official statistical system, as well as a crucial
source of information for various Dutch government services. It is collected at the municipal
level but used at the national level as input to construct the virtual census, draw samples for
official, academic, and commercial probability surveys, and to divide welfare transfers and
decide local public policies. The GBA’s accuracy is therefore under heavy scrutiny, as evi-
denced by the 2007 official instruction by Parliament to “improve accuracy to at least 99%”2.
This instruction has prompted a series of audits, in which investigating officers with special
powers are trained by local governments to investigate and visit addresses until the accurate
values for the corresponding GBA record can be verified with certainty, a very costly effort.
Based on this expensive investigation, the municipality of Amsterdam estimated the inaccu-
racy of the neighborhood of residence to be around 1.7%; one point of interest is whether this
estimate could have been arrived at more cheaply.

Combining the survey with the administrative register, we have four observed variables:
the direct survey question with the postcode-derived measure shown in Figure 2, the admin-
istrative register, and the survey mode. The table of cross-classifications of these variables
was provided by the research service of the municipality of Amsterdam. It should be noted
here that we did not obtain any postcode values, but only the derived neighborhood. Since
each of the residential neighborhoods is estimated to be inhabited by at least 84,000 people,
privacy is not a concern for this cross-tabulation. Such concerns did prevent a larger level of
detail from being made available, so that it was not possible to include further covariates in
the analysis.

Table 1 cross-tabulates the two survey measures (columns) with the administrative regis-
ter. The Table shows that the correspondence among these measures is rather large, as may
be expected with this variable. However, it is far from perfect. For example, in the direct
question 51 respondents (13%) who live in Nieuw-West according to the register claim to
live in the more affluent West neighborhood. The postcode-derived measure indicates this

2Dutch Parliament, Motion 31 200 VII-34.
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Survey: direct Survey: postcode
A E F K M N T A E F K M N T

Register
A 432 5 1 0 3 0 0 412 1 0 0 0 1 0
E 1 356 11 1 2 0 1 0 351 0 2 2 0 1
F 0 51 341 1 0 2 0 0 0 372 0 0 2 0
K 8 5 3 1669 2 1 8 0 2 1 1536 0 0 1
M 2 5 0 1 402 2 0 0 2 1 0 386 1 0
N 0 0 1 1 1 441 0 0 0 1 1 0 422 0
T 0 0 0 0 0 3 355 0 0 0 0 0 0 340

Table 1: Cross-tabulation of the observed survey measures with the administrative measure.
A: Centrum, E: West, F: Nieuw-West, K: Zuid, M: Oost, N: Noord, T: Zuidoost.

as well, so that the most likely explanation here is measurement error in the direct question.
However, there are also 3 respondents (∼ 1%) in this group who live in entirely different non-
adjoining neighborhoods according to both survey measures; such cases may indicate that the
administrative register, too, contains some classification error. Alternatively, this may be a
case of consistent mistake-making on the part of the respondent–it is impossible to tell purely
from these cross-tables. It is this difficulty of drawing conclusions by inspecting Table 1 that
impels us to use a different tool: latent class models.

3 A latent class model for neighborhood of residence
From the three observed measures and the survey mode indicator, our goal is to estimate the
classification error in each of the measures. Since none of the three measures are perfect, a la-
tent variable model is used in which the unobserved (“latent”) true neighborhood is measured
with error by the three indicators. Such models in which the latent variable is categorical are
known as “latent class models” in the literature (e.g. Hagenaars and McCutcheon, 2002) and
have been applied to the estimation of classification error in survey data by Lazarsfeld (1950),
McCutcheon (1987) and, more recently, Biemer (2011) and Oberski (2013).

The standard latent class model assumes one single latent class variable, S, say, condi-
tionally upon which the observed indicators y1, y2, and y3 are independent. For example, in
our seven-neighborhood case, a seven-class model might be formulated:

P (y1, y2, y3) =
7∑

s=1

P (y1|S)P (y2|S)P (y3|S)P (S). (1)

Responding “Don’t know” or not providing a postcode can simply be modeled as sepa-
rate categories of the observed variables. However, this standard model implies that the
two survey measures are independent of each other given the latent class, P (y2, y3|S) =
P (y2|S)P (y3|S). This “local independence” assumption will be violated when respondents
who do not answer the direct survey question also do not (wish to) provide their postcode;

5



Figure 3: Latent class measurement model for the three measurements of neighborhood of
residence. Latent variables are shown in shaded ovals, while observed variables are shown as
rectangles.

or when the classification error differs over survey mode. For a more general discussion of
possible reasons for local dependence, see Biemer (2011, Sec 5.2).

In order to account for possible local dependence between the survey measures, we allow
for a “method factor”: a latent variable that represents an individual tendency to answer in
a certain way, independent of the true neighborhood of residence. Note that this means the
“method factor”, instead of being a systematic bias, is a stochastic effect shared by the two
survey questions. For example, this unobserved variable may represent a person’s tendency
to keep their neighborhood secret from the researcher. To investigate the effect of survey
mode, we also include the survey mode chosen as a covariate in the model. Since mode is not
randomized, it may correlate with the true neighborhood of residence. There is no reason to
suppose, however, that survey mode affects the measurement of the administrative register, an
assumption that allows the identification of the method factor. The resulting model is shown
in Figure 3.

From Figure 3, the likelihood of the observed measures y1, y2, and y3 given the fixed
“survey mode” covariate x is

P (y1, y2, y3|x) =
7∑

s=1

2∑
m=1

P (y1|S)P (y2|S,M, x)P (y3|S,M, x)P (S|x)P (M |x), (2)

where we have chosen two categories for the latent method factor. That is, the likelihood is
that of a latent class model with two separate latent class variables, one representing the true
neighborhood of residence S and the other the respondent’s answer tendency in the survey
M . Given the latent S, the observed register y1 is assumed independent of (y2, y3, x), while y2
and y3 are only mutually independent given S, M , and x. The latent “trait” S and “method”
M are assumed independent given the survey mode.
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The conditional probabilities on the right-hand side of Equation 2 are parameterized using
a logistic regression model. For instance, for the survey postcode question, the conditional
probability is modeled as a logit with main and second-order interaction effects from its
categorical regressors,

P (y2 = k|S = s,M = m,x) =
exp(τk + λks + λkm + γkx)∑
k′ exp(τk′ + λk′s + λk′m + γk′x)

, (3)

where, as in multinomial logistic regression, the reference category parameters are set to zero
for identification purposes, τ1 = λ1. = γ1x = 0. It is, in principle, also possible to incorporate
higher-order interactions. For instance, the logistic “loading” λks, which is directly related
to the measurement quality, could be allowed to vary over survey mode by replacing the
parameter λks by λksx, a possibility that can be tested using the data. Even without such an
interaction, however, the classification probability in Equation 3 will differ over survey mode
simply due to the nonlinear nature of the logistic regression.

Maximum-likelihood estimation of the model can proceed by directly maximizing the
likelihood in Equation 2, or by expectation-maximization (EM), starting the E-step by choos-
ing starting values for the model parameter estimates ϑ̂t−1, and calculating, for each observa-
tion, the posterior joint probability of the 7× 2 latent variable values given the observation,

P̂ (S,M |x, y1, y2, y3) =
P̂ (y1, y2, y3|x, S,M)P̂ (S|x)P̂ (M |x)∑7

s=1

∑2
m=1 P̂ (y1, y2, y3|x, S,M)P̂ (S|x)P̂ (M |x)

, (4)

where P̂ (·) := P̂ (·|ϑ̂t−1). In the maximization step, new parameter estimates are then ob-
tained by standard estimation techniques for linear regression, by iterative proportional fit-
ting, or by pseudo-ML, using the posteriors as weights,

ϑ̂t = arg max
ϑ

n∑
i=1

7∑
s=1

2∑
m=1

P̂ (S,M |x, y1, y2, y3) lnP (y1, y2, y3|x, S,M, ϑ). (5)

The E-step in Equation 4 and M-step in Equation 5 are then iterated until convergence. In
practice it is usually not necessary to create custom computer programs to obtain the esti-
mates, since the model formulated above can be readily estimated in standard software for
latent class analysis such as Mplus (Muthén and Muthén, 2012), `EM (Vermunt, 1997), or
Latent GOLD (Vermunt and Magidson, 2013). The present analysis uses Latent GOLD 5.0.

Freely estimating the class sizes will often lead to class size estimates that differ from the
official proportions of citizens living in each neighborhood, πs, say. If this is not desired, a
possible solution is to fix the class sizes to these known official proportions. However, this
entails the complication that the meaning of the classes in terms of the observed indicators
must also be restricted in the estimation procedure, to ensure, for instance, that a class chosen
to represent the Zuid neighborhood has the correct fixed proportion. Moreover, due to the
presence of covariates this restriction needs to be made in terms of the marginal

∑
x P̂ (S|x).

In short, while possible, imposing such restrictions can be challenging in practice. A simpler
solution is to poststratify the posterior in Equation 4: when calculating misclassification rates,
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instead of a mean of posteriors within a particular category of an observed measure we then
take the weighted mean, where the weights are chosen to be the poststratification weights,

ws = πs/
¯̂
P (S = s).

From Equation 4 it can be verified that this poststratification corresponds to one cycle of the
EM algorithm, in which the M-step is performed separately for each variable.

4 Results

4.1 Model fit
The previous section made certain choices for the specification of the model. A first step in
analysis is to see whether these choices were necessary to fit the data, or whether a simpler
model could have been fit. Conversely, some of the choices may have been too restrictive
and it is of interest to see whether these restrictions fit the data. Table 2 investigates this by
comparing different specifications using as fit measures the BIC, AIC, AIC3 and CAIC. All
of these information criteria seek a balance between model-data fit and model complexity,
but do so in slightly different ways, leading to different preferred models shown in bold face
in the Table (lower values are better). The total “bivariate residual” (Vermunt and Magidson,
2013; Oberski et al., 2013b) is also given, in the last column (BVR): a sum of chi-squares
measuring the distance between observed and expected frequencies in the bivariate cross-
tables.

The rows in Table 2 correspond to models that result from combining the choices of
survey mode effect with the number of latent method classes. The first model fitted (row
1) was the seven-class local independence model in Equation 1. None of the fit measures
prefer this model, clearly indicating residual dependence. Model 1 as well as models 2–4 had
one method class, which simply means there was no method factor (as can be verified from
Equation 2). Models 8–10, on the other hand, were fit to investigate whether the previous
Section’s choice of two method classes should be extended to three classes. Comparing these
three groups it is clear that all fit measures prefer a model with two method classes. Moreover,
the total BVR is most reduced when going from no method factor at all to a method factor
with two classes. There is indeed a dependence between the two survey measures that is
adequately accounted for by allowing for two method factor classes.

Among the models that had two method classes, models 5–7 differ on how the survey
mode effect was specified. Model 5 only related the survey mode to the true neighborhood
S, but not directly to the survey measures (in Figure 3, no direct arrows from x to y2 or
y3). Model 7 is the model shown in Figure 3, allowing both direct and indirect effects. It is
preferred by AIC. While Model 5 is preferred by the BIC and CAIC, the total BVR is still
relatively large; the bootstrapped p-value for this measure of misfit is p = 0.010, indicating
that this model may be too parsimonious. Since the misfit relative to model 7 can only
result from the omission of the two direct arrows, the source of the misfit can be discovered
by inspecting the individual BVR’s for these cross-tables (between x and each of y2 and
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Mode Method
classes

# par. L2 BIC AIC AIC3 CAIC Total
BVR

1. No effect 1 153 1198 -10101 -1514 -2870 -11457 15.9
2. Only indirect 1 165 505 -10694 -2183 -3527 -12038 15.9
3. (In)direct, y3 1 181 443 -10624 -2213 -3541 -11952 13.5
4. (In)direct, (y2, y3) 1 195 162 -10788 -2466 -3780 -12102 0.99
5. Only indirect 2 183 205 -10844 -2447 -3773 -12170 3.08
6. (In)direct, y3 2 199 133 -10783 -2487 -3797 -12093 0.39
7. (In)direct, (y2, y3) 2 213 105 -10695 -2487 -3783 -11991 0.21
8. Only indirect 3 201 151 -10749 -2465 -3773 -12057 0.71
9. (In)direct, y3 3 217 100 -10666 -2484 -3776 -11958 0.38
10. (In)direct, (y2, y3) 3 231 83 -10566 -2473 -3751 -11844 0.15

Table 2: Model fit measures for different specifications of the latent class model. The best
fit according to each measure has been indicated in bold face.

y3). Theses BVR’s show that most of the misfit was caused by the direct question, y3. A
model only allowing a direct effect on y3, model 6, was therefore also fitted to the data as a
compromise between Models 5 and 7. This model is preferred by AIC3. The total BVR after
freeing only this one direct effect rather than both has a bootstrapped p-value of 0.120. Model
6 therefore appears to fit well in both relative and absolute terms, and provides a reasonable
balance between complexity and fit. This model was therefore selected.

4.2 Error rate estimates
From the final model we calculate the estimated overall (mis)classification rates P̂ (y|S) by
marginalizing over the mode and method. These (mis)classification rates are shown for the
three measures of neighborhood of residence in Table 3. Given each “true neighborhood”
(columns), the conditional probability of observing a particular category of the three mea-
sures (rows) is shown. For example, when answering the direct question, respondents who
belong to the latent class labeled “Nieuw-West” (truly live in Nieuw-West) have an estimated
probability of 0.1287 of answering mistakenly that they live in West.

Overall, as one, might expect, Table 3 shows the administrative register is estimated to
be of the highest measurement quality overall. This can be seen by comparing the diagonal
estimated correct classification probabilities between the three measures. The average mis-
classification, weighted by class size was 0.5% for the administrative register, 7% for the
postcode-derived survey measure, and 4.8% for the direct survey question. However, these
misclassification rates include the “missing” category as “misclassification”. If missingness
were to be ignored, the misclassification rates for the postcode-derived and direct survey
measure would be 0.15% and 3.8%, respectively. That is, ignoring the missing data, the
postcode-derived measure is estimated to contain less measurement error than the adminis-
trative register. However, missingness in the postcode-derived survey measure does appear
to be larger for the Zuid neighborhood (deviance 18.5 on 6 df , p = 0.005), so that it may not
be ignorable for certain purposes.
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Latent class (“true neighborhood”)
Centrum West Nw-West Zuid Oost Noord Zdoost

Class size 0.1063 0.0902 0.0972 0.4100 0.0990 0.1096 0.0876
Official stats. 0.1061 0.1738 0.1775 0.1720 0.1555 0.1108 0.1036

Register: postcode
Centrum 1.0000 0.0000 0.0000 0.0000 0.0000 0.0022 0.0000
West 0.0000 0.9947 0.0000 0.0000 0.0050 0.0000 0.0028
Nieuw-West 0.0000 0.0000 0.9921 0.0000 0.0000 0.0044 0.0000
Zuid 0.0000 0.0000 0.0029 0.9994 0.0000 0.0000 0.0058
Oost 0.0000 0.0053 0.0025 0.0000 0.9950 0.0022 0.0000
Noord 0.0000 0.0000 0.0025 0.0006 0.0000 0.9912 0.0000
Zuidoost 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.9914

Survey: postcode
Missing 0.0656 0.0531 0.0722 0.0972 0.0584 0.0658 0.0634

Centrum 0.9321 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
West 0.0023 0.9416 0.0000 0.0012 0.0000 0.0000 0.0000
Nieuw-West 0.0000 0.0000 0.9278 0.0000 0.0000 0.0000 0.0000
Zuid 0.0000 0.0053 0.0000 0.9016 0.0000 0.0000 0.0000
Oost 0.0000 0.0000 0.0000 0.0000 0.9416 0.0000 0.0000
Noord 0.0000 0.0000 0.0000 0.0000 0.0000 0.9342 0.0000
Zuidoost 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.9366

Survey: direct question
DK 0.0023 0.0051 0.0198 0.0065 0.0050 0.0241 0.0110

Centrum 0.9774 0.0027 0.0000 0.0047 0.0049 0.0000 0.0000
West 0.0113 0.9600 0.1287 0.0029 0.0049 0.0000 0.0000
Nieuw-West 0.0023 0.0295 0.8490 0.0011 0.0000 0.0000 0.0000
Zuid 0.0000 0.0027 0.0025 0.9796 0.0024 0.0000 0.0000
Oost 0.0068 0.0000 0.0000 0.0012 0.9804 0.0022 0.0000
Noord 0.0000 0.0000 0.0000 0.0006 0.0024 0.9737 0.0082
Zuidoost 0.0000 0.0000 0.0000 0.0035 0.0000 0.0000 0.9808

Table 3: Classification rates for the three observed measures (Model 6). Shown are the esti-
mated conditional probabilities of observing each category given the latent class. The (bold-
face) diagonal in each table indicates the estimated proportion of correct classifications. Note
that missings are considered incorrect classifications here.
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Figure 4: Estimated correct classification probabilities (excluding missing) by survey mode
for the two survey measures.

Figure 3 shows shows how the quality of the two survey measures differs over the three
survey modes. Plotted is probability of observing the correct category for each of the two sur-
vey measures, among respondents who answered in one of three survey modes. For the direct
question, Figure 3 demonstrates some differences between the modes; in particular, with the
exception of one neighborhood, correct classifications are somewhat more prevalent in the
face-to-face mode (triangles) than in the other two modes. The largest quality differences be-
tween the modes are observed in the postcode-derived measure, however. When interviewed
over telephone using CATI (dots in the Figure), the measurement quality of the postcode-
derived survey measure is estimated to be perfect. The reason for this is that over the phone,
respondents were read their administrative register value for the postcode and asked whether
this was correct or not; if not, the value was corrected in the register. This procedure was
only officially followed over the telephone. However, an interviewer visiting a respondent’s
home in a different neighborhood than indicated by their postcode may also have provided
some correction to the survey values, leading to a high quality using face-to-face data col-
lection (triangles). The web mode (squares) was estimated to yield the lowest quality here,
with correct classification rates between 0.85 and 0.90. It should be noted at this point that
the differences in measurement quality over survey modes need not be fully due to the mode
of data collection only, since the choice of mode was not randomized, but determined by
response status.

The effect of the method classes is shown in Table 4. Membership of class 2 appears to be
most strongly related to proving a missing value on both survey measures. Thus, the method
factor here predominantly represents a tendency to refuse to report one’s neighborhood in a
survey. While this tendency is strong within class 1 with a probability of 0.858 of omitting
the postcode, only about 9% of respondents are estimated to belong to this class.

5 Discussion and conclusion
This chapter demonstrated how measurement error rates can be estimated in survey and ad-
ministrative measures of a categorical variable without the need for a golden standard. Using
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Method
class

Class
size

Mis. Centrum West Nw-West Zuid Oost Noord Zdoost

Survey: postcode
Class 1 0.090 0.858 0.036 0.022 0.000 0.038 0.033 0.005 0.008
Class 2 0.910 0.000 0.105 0.092 0.099 0.403 0.099 0.112 0.090

Survey: direct
Class 1 0.090 0.031 0.120 0.097 0.062 0.445 0.091 0.085 0.069
Class 2 0.910 0.007 0.105 0.102 0.088 0.398 0.099 0.110 0.089

Table 4: Estimated conditional probabilities within method classes.

linked survey-register data from the municipality of Amsterdam on the neighborhood of res-
idence, a multiple latent variable model estimated error rates, both in the administrative reg-
ister and in the survey for different data collection modes. The register was indeed estimated
to be of excellent quality with an average 0.5% error rate. In this case, therefore, often-made
assumptions about this administrative register’s quality do not appear to be far from the truth.

The average error rate estimated here (0.5%) was lower than that estimated from expen-
sive audits performed by the local government, which had put the estimated average error rate
at about 1.7%. On the one hand, thus, latent variable modeling may have somewhat overes-
timated the quality of the administrative register. On the other hand, the costs of full-scale
audits compared with latent variable modeling are gigantic, meaning that a small inaccuracy
still leaves latent variable modeling an attractive alternative. More studies comparing the
results of such audits with those using the latent variable approach are needed, however. Par-
ticularly relevant in the Dutch context is that one estimate is below the officially mandated
1% limit and the other above it.

The two survey measures, one direct and the other derived from a question asking the
respondents’ postcode, clearly showed a lower quality. When asked over the web, for in-
stance, postcode-derived neighborhood of residence was estimated to have an error rate of
between 10% and 15%. Such an error rate may be acceptably small for certain applications,
while for others it may lead to rather large distortions in the final analyses of interest. For
example, when the neighborhood of residence is used to link survey answers to background
variables on the neighborhood level, measurement error in these linked background variables
will result.

Some limitations of the present study remain. First, the administrative register in question
is of course collected all over the Netherlands, not just in one municipality. This chapter’s
results can therefore not be generalized to the GBA register as a whole. Second, the survey
mode was not randomized so that it is difficult to attribute quality differences over survey
modes to either mode or selection effects. Third, the assumption that measurement error in the
administrative register is conditionally independent of the survey answers may be problematic
in some cases – especially when there are strong personal incentives to provide incorrect
values consistent with the register, for example when renting illegally. This possibly explains
the higher estimate of quality obtained here. Fourth and finally, because only one register
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measure was available it was not possible here to incorporate a method factor for the register
as well as the survey measures.

In summary, latent variable modeling of linked survey-register data can be viewed as an
attractive method of investigating the assumption that administrative registers are perfect.
Moreover, it is the only way of estimating measurement error in “objective” survey questions
without requiring a gold standard. Since objective variables such as the neighborhood of
residence play a central part in many analyses, this approach appears to be a fruitful way of
preventing distortions in such analyses.
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