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Abstract 

 

Covariance structure models comprise a wide class of models, popular in the 

social and behavioral sciences and often applied to complex sample surveys. 

Variance estimation for such models has received relatively little attention. 

This short note introduces a model-based variance estimator under complex 

sampling for aggregated parameters of covariance structure models. This 

variance estimator can be used for three purposes: to assess sampling variance 

when the model is thought to be correct; as a working covariance matrix in 

GEE estimation; or to estimate “design” (or “misspecification”) effects of 

nonnormality and clustering separately. A small simulation study indicates that 

the proposed estimator can accurately recover sampling variance, while an 

example confirmatory factor analysis demonstrates its use. 
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1. Introduction 

Covariance structure modeling comprises a very general class of models, 

including but not limited to (multivariate) regression, factor analysis, path 

analysis, structural equation models, heritability models for twin data, growth 

curve models, and cross-lagged panel models with possible latent variables 

(Bollen, 1989; Kline, 2011). Such models are often applied to complex sample 

survey data, and it well-known that in such cases the standard variance 

estimators need adjustment to allow for correct inference. For an overview of 

these and other issues arising in covariance structure modeling of complex 

samples, see Bollen, Tueller, & Oberski (2013).  

Under multi-stage sampling, parameters that are either aggregated 

(marginal) or disaggregated (conditional) over clusters may be of interest 

(Skinner, Holt, & Smith, 1989, pp. 8-10).  Muthén & Satorra (1995) discussed 

design-based variance estimation for aggregated covariance structure model 

parameters under complex sampling (see also Skinner, Holt, & Smith, 1989, 

chapter 3) as well as model-based variance estimation for disaggregated 

parameters. Currently, however, no model-based variance estimators for 

aggregated parameters of covariance structure models are available. This short 

note provides such a variance estimator.  

 There are three motivations for providing a model-based variance 

estimator for aggregated parameters.  

First, such an estimator is likely to be more accurate when the model 

holds (Wu & Kwok, 2012).  Although such advantages will depend on model 



correctness (Skinner & de Toledo Vieira, 2007), they may be considerable 

when the model is reasonable, particularly in  small samples.  

Second, even when the model does not hold, the variance estimator 

presented here can be used as a working covariance matrix in GEE estimation. 

Asymptotically optimal estimation weight matrices are already available, but 

known to yield a high mean square error in finite samples (de Toledo Vieira & 

Skinner, 2006; Oberski, 2013a); on the other hand, the independence working 

matrix does not take clustering effects into account at all. The variance 

estimator developed here compromises between these two extremes.  

Third, a variance estimator that assumes normality but also accounts 

for clustering is needed when evaluating misspecification (“design”) effects 

(Skinner et al., 1989, chapter 2) of nonnormality and clustering separately 

(Oberski, 2013b). Currently available variance estimators cannot separate these 

two effects on covariance structure model parameters from one another, since 

they account for both clustering and nonnormality or for neither. 

Section 2 describes covariance structure analysis on data with normally 

distributed cluster effects. Section 3 then presents the standard nonparametric 

estimator for the variance of the model parameter estimates as well as the 

model-based estimator introduced by this note. A small simulation study 

demonstrating the validity of this estimator under the model assumptions is 

conducted in Section 4, after which an example application is presented in 

Section 5.  

 



2. Definitions 

Suppose a vector 𝑦 of variables is observed on a multistage sample with 𝐶 

clusters (primary sampling units) from a population, where the i-th observation 

in the c-th cluster is assumed to follow the model 

𝑦!" = 𝜇! + 𝜖!" , 

with 𝜇!   ~  𝑁 𝜇, Σ ! , and 𝜀!"   ~  𝑁(0, Σ ! ). For nonzero within- and between- 

cluster covariance matrices Σ !  and Σ ! , observed data 𝑦! follow a known but 

nonnormal distribution, with pooled (aggregated) population covariance matrix 

Σ, say. Although in some applications the “disaggregated” parameters of Σ !  

and Σ !   may be of interest, we treat the case in which the “aggregated” 

parameters of the overall covariance matrix Σ are of interest. 

This aggregated covariance matrix is parameterized by a covariance 

structure model Σ = Σ(θ). Given a consistent sample estimate of the pooled 

covariance matrix, S, say, this model is fitted by minimizing a fitting function 

𝐹 S, Σ θ , yielding sample parameter estimates, θ = argmin! 𝐹 S, Σ θ . 

Note that the estimation of S may involve sampling weights. The most 

commonly used point estimator for θ is obtained by minimizing the normal-

theory maximum likelihood fitting function 𝐹ML under multivariate normality, 

but other choices are also possible. Notably, weighted least squares 𝐹WLS with 

an appropriately chosen weight matrix will yield asymptotically optimal 

estimates (Browne, 1984) that nevertheless have performed badly in finite 

sample applications (e.g. Vieira & Skinner, 2008). Regardless of the choice of 



fitting function, important matrices are the Jacobian Δ = 𝜕σ 𝜕θ and the 

hessian matrix V = 𝜕!F 2𝜕σ𝜕σ′, where σ is the half-vectorization of  Σ, i.e., 

σ = vech(Σ). 

 

3. Variance estimation for aggregated covariance structure models 

In general the asymptotic variance of the parameter estimates has a familiar 

“sandwich” form, 

avar(θ) = (Δ′𝑉Δ)!!Δ!𝑉Γ𝑉Δ Δ!𝑉Δ !!, 

where Γ = var(𝑠), and 𝑠 the half-vectorization of S (Satorra, 1989).  This result 

can be derived by noting that 𝜕θ 𝜕s = [Δ!𝑉Δ  + 𝑜 𝑛 ]!!Δ!𝑉 (Oberski, 

2013a) and applying the linearization variance formula of Wolter (2007, eq. 

6.2.2). A consistent sample estimate of the variance can be obtained by 

replacing the parameter values by their sample estimates in 𝑉and Δ, 

expressions that may be obtained for a very general class of covariance 

structure models from Neudecker & Satorra (1991).  

The sampling variance Γ of the non-redundant covariances then 

remains to be estimated. Commonly, the nonparametric estimator is used 

(Muthén & Satorra, 1995, p.. 285-7; Skinner et al., 1989, p. 47-9), 

𝛤clus, NP = 𝑛!!
𝐶

𝐶 − 1 𝑑! − 𝑠 𝑑! − 𝑠 !,
!

!!!

 

where 𝑛 is taken to be the sum of the weights instead of the sample size,  

𝑑! = 𝑤!   vech 𝑦! − 𝑦 𝑦! − 𝑦 ′!!
!!! , and 𝑦 = 𝑛!! 𝑤!𝑦!!

!!! . This estimator 



accounts for both the complex sampling design and any nonnormality. Under 

the model described above, however, it is possible to derive an alternative 

variance estimator that accounts for the complex sampling design but is 

derived under the normality assumptions outlined above. 

 Under the model, it follows from standard results on the normal 

distribution that the variance of the observed covariances will equal 

Γclus, NT = 2D! 𝐶!! Σ ! ⨂Σ ! +   𝑛!! Σ ! ⨂Σ ! D!!, 

where 𝐷!is the Moore-Penrose inverse of the duplication matrix (Magnus & 

Neudecker, 2007). A consistent (maximum-likelihood) sample estimator can 

be obtained by estimating Σ !  and Σ ! as  

𝑆(!) = 𝐶!! (𝑠! − 𝑠.)!
!

!!!

 and 𝑆(!) = 𝐶!! 𝑠! ,
!

!!!

 

where 𝑠! = 𝑛!!! (𝑦!" − 𝑦.!)
!!!

!!! , and 𝑦.! is a design-consistent estimate of 

𝐸(𝑦) that may involve sampling weights. Note that it is possible to replace 

𝑛!!! by (𝑛! − 1)!! and 𝐶!! by (𝐶 − 1)!! in these estimators to obtain 

unbiased sample estimates, although the maximum likelihood divisors used 

here are more common to covariance structure analysis. 

 

  



4. Small simulation study 

The performance of the proposed variance estimator depends entirely on 

whether it adequately estimates the variance under the model specified. A 

small simulation study was therefore conducted to evaluate this performance. 

In the design of this simulation, the following factors were manipulated: 

• Number of primary sampling units (PSU’s) or clusters: 

𝐶   ∈ {10, 25, 50, 100}; 

• Number of observations per cluster (2SU’s): 

𝑛! ∈ {2, 5,10, 25, 50, 100}; 

• Amount of between-cluster heterogeneity, Σ(!) = 𝜎!  I, with variance 

𝜎! ∈ {0, 0.1,0.5,1}. 

For each of the resulting 4  ×  6  ×  4 = 96 conditions, 1000 datasets were 

simulated from the model using R 3.0.1 (R Core Team, 2013). The 21 unique 

elements of the observed 6  ×  6  variance-covariance matrix were then 

calculated together with their model-based asymptotic variance matrix 

𝛤clus, NT as proposed in the previous section. For comparison, the usual 

nonparametric asymptotic variance matrix 𝛤clus, NP was also calculated for each 

sample. 

 Figure 1 shows the ratio of estimated to observed variance of the 

variances and covariances for different conditions. The number of PSU’s 

(clusters) is plotted on the horizontal axis, the colors of the points indicate the 

amount of between-PSU heterogeneity, and the shape of the points 



corresponds to the number of observations per PSU. Figure 1 shows that with a 

small number of PSU’s and a large amount of heterogeneity, the standard 

nonparametric variance estimator somewhat underestimates the variance: the 

ratio of estimated to observed variance is 0.90. The model-based variance 

estimator performs much better in this condition, with a ratio close to unity. 

Increasing the number of PSU’s this ratio remains stable near unity for the 

model-based estimator, although there appears to be a slight (3.5%) 

overestimation in some conditions. Overall, under the model assumptions, the 

model-based estimator appears to accurately reproduce the sampling variance 

of the variances and covariances. 

 To compare the relative performance of the nonparametric and model-

based estimators when the model is indeed correct, Figure 2 reproduces the 

ratio of the root mean squared errors of both estimators. The horizontal axis of 

Figure 2 corresponds to the amount of cluster heterogeneity while the colors of 

the points correspond to the number of second-stage units. These two factors 

were chosen because a preliminary analysis indicated that they were the most 

influential on the root mean squared error ratio. The points are averages within 

these conditions. Figure 2 shows that the relative root mean squared error 

ranges from 5 to 1.2, meaning that, under model correctness, the model-based 

estimator is between 20% and 400% more accurate than the nonparametric 

estimator.  

 

  



 

 

 

Figure 1:  Ratios between estimated and simulation variance of estimates for different numbers of 
primary and secondary sampling units and between-cluster heterogeneity. 

	
  

	
  

Figure 2:  Comparison between the model-based and nonparametric variance estimators under model 
correctness, for different second-stage sample sizes and cluster heterogeneity values. Higher values 
indicate that the nonparametric variance estimator has a higher root mean square error. 
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5. Example application 

Roosma, Gelissen, & Oorschot (2012) discuss a confirmatory factor analysis 

of respondents’ attitudes towards the welfare state. They postulate a two-factor 

model for nine observed variables from the 2008 European Social Survey (see 

http://europeansurveyresearch.org for precise descriptions, variable names, and 

data). The original authors did not take into account the complex sampling 

design of the European Social Survey. Oberski (2013a) reanalyzed these data 

with the lavaan package in R, taking account of the complex sampling design 

in the UK data from the European Social Survey (R Core Team, 2013; Rosseel 

et al., 2013). Here we demonstrate the use of the variance estimator discussed 

above on these data to separately estimate clustering and nonnormality 

misspecification effects.  

 Table 1 gives the parameter estimates for the loadings, error variances, 

and factor (co)variances of this model. Standard errors accounting (or not 

accounting) for clustering and nonnormality are also given. The normal-theory 

standard errors that do take clustering into account are those introduced here.  

Using all four combinations, “conditional misspecification effects” 

(Oberski, 2013b) can be calculated as the theoretical increase in standard error  

relative to the hypothetical situation without clustering or nonnormality. These 

estimates are shown in Table 2. The Table shows the average of conditional 

misspecification effects on standard errors for the three types of parameters. Of 

these types, it is well-known that loading and factor (co)variance estimates are 

highly correlated, while error variance parameters are independent of the other 



types (Skrondal & Rabe-Hesketh, 2004). It is therefore unsurprising that the 

conditional misspecification effects are similar for loadings and factor 

(co)variances. Under normality, clustering increases standard errors by about 

10% while without clustering, nonnormality increases standard errors by only 

about 5% for these parameters. For factor loadings, the misspecification effects 

are stronger: clustering under normality increases standard errors by 19% 

whereas nonnormality without clustering increases them by 25% -- this large 

relative increase is less, however, when clustering is already taken into 

account.  Another way of seeing this is that when clustering is ignored, 

calculating standard errors that are robust to nonnormality will remove some, 

but not all, of the clustering effects. 

Table 1: Parameter estimates and four types of standard errors for two-factor analysis of nine indicators 
of attitudes to the welfare state. NT: normal-theory, NP: nonparametric, clust.: clustered.  

Parameter Est. s.e., 
 iid, NT 

s.e.,  
iid, NP 

s.e.,  
clust., NT 

s.e.,  
clust., NP 

Loadings      
 range→gvhlthc 0.59 0.0323 0.0391 0.0391 0.0444 
 range→gvslvol 0.68 0.0342 0.0397 0.0408 0.0427 
 range→gvslvue 0.82 0.0470 0.0425 0.0466 0.0409 
 range→gvcldcr 0.91 0.0482 0.0463 0.0500 0.0474 
 range→gvpdlwk 0.87 0.0469 0.0468 0.0512 0.0481 
 goals→sbeqsoc 1.32 0.1218 0.1265 0.1361 0.1237 
 goals→sbcwkfm 0.92 0.0796 0.0857 0.0881 0.0897 
Error variances      
 gvjbevn↔gvjbevn 4.64 0.1650 0.1815 0.1878 0.1933 
 gvhlthc↔gvhlthc 1.39 0.0506 0.1016 0.0867 0.1144 
 gvslvol↔gvslvol 1.13 0.0465 0.0698 0.0598 0.0700 
 gvslvue↔gvslvue 3.32 0.1169 0.1406 0.1274 0.1488 
 gvcldcr↔gvcldcr 2.81 0.1059 0.1332 0.1220 0.1326 
 gvpdlwk↔gvpdlwk 2.84 0.1047 0.1552 0.1348 0.1704 
 sbprvpv↔sbprvpv 0.58 0.0251 0.0281 0.0291 0.0290 
 sbeqsoc↔sbeqsoc 0.52 0.0341 0.0358 0.0377 0.0376 
 sbcwkfm↔sbcwkf 0.49 0.0212 0.0230 0.0225 0.0222 
Factor (co)variances      
 range↔range 1.96 0.1664 0.1624 0.1804 0.1710 
 goals↔goals 0.19 0.0234 0.0255 0.0268 0.0293 
 range↔goals -0.11 0.0218 0.0240 0.0233 0.0298 



Table 1: Mean conditional misspecification effects of clustering and nonnormality, and their interaction. 

 Conditional misspecification effect on standard errors 
Parameter type Clustering  Nonnormality Clustering × Nonnormality 
Error variances 1.19 1.25 0.85 
Loadings 1.10 1.05 0.93 
Factor (co)variances 1.09 1.05 1.04 
 

6. Concluding remarks 

This note introduced a variance estimator for aggregated covariance structure 

models that accounts for clustering effects but does assume these effects 

follow a normal distribution. Such an estimator may be useful in at least three 

scenarios: 1) when the normality assumption is reasonable but aggregated 

parameters are of interest; 2) as an inverse estimation weight matrix in GEE 

(WLS) estimation; and 3) when conditional misspecification effects of 

nonnormality and clustering are of interest separately. A small simulation 

showed that the variance estimator proposed provides accurate estimates under 

a variety of conditions, while an example application to a confirmatory factor 

analysis demonstrated the use of the variance estimator introduced here for the 

third purpose (misspecification effects estimation).  

 The purpose of this note was to introduce the model-based variance 

estimator, point out some possible applications, and demonstrate its feasibility. 

In the future, more evaluations of this estimator are necessary. Particularly, its 

robustness, or lack thereof, to violations of the normality assumption for 

purposes 1 and 2; and its performance in GEE estimation as compared with 

other complex sampling estimators for covariance structure modeling.  
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