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Abstract

Introduces the R package lavaan.survey, a user-friendly interface to design-based com-
plex survey analysis of structural equation models (SEM). By leveraging existing code in
the lavaan and survey packages, the lavaan.survey package allows for SEM analyses of
stratified, clustered, and weighted data, as well as multiply imputed complex survey data.
lavaan.survey provides several features such as SEM with replicate weights, a variety of re-
sampling techniques for complex samples, and finite population corrections, features that
should prove useful for SEM practitioners faced with the common situation of a sample
that is not iid.

Keywords: clustering, stratification, sampling weights, multiple imputation, resampling, jack-
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1. Introduction

Structural equation modeling (SEM) is a popular framework for formulating, fitting, and
testing an abundant variety of models for continuous interval-level data in a wide range of
fields. Special cases of SEM include factor analysis, (multivariate) linear regression, path
analysis, random growth curve and other longitudinal models, errors-in-variables models,
and mediation analysis (Bollen 1989; Kline 2011). The main development of SEM has been
in social science fields such as psychology (Ullman and Bentler 2003), education (Kaplan
2008), and sociology (Duncan 1975; Saris and Stronkhorst 1984), while more recently SEM is
finding applications in other fields such as ecology and biology (Grace 2006) and neuroscience
(Mclntosh and Gonzalez-Lima 1994; Roelstraete and Rosseel 2011).

While classical SEM theory assumes independently and identically distributed (iid) observa-
tions (Bollen 1989), applications often analyze data from complex surveys that may involve
stratification, clustering, and unequal selection probabilities, violating this assumption (Skin-
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ner, Holt, and Smith 1989; Muthén and Satorra 1995, p. 281). For example, Marsh and
Hau (2004) explained the relations between academic self-concepts and achievements in a
26-country complex multistage survey. Outside of the realm of complex surveys clustering
may also occur, for instance in Byrnes et al. (2011)’s analysis of the effect of storms on kelp
forest food webs, where variables such as kelp density and species richness are likely correlated
across sites that are geographically close to each other. It is well-known that under complex
sampling, both point and variance estimators derived under iid assumptions may produce
biased and inconsistent estimates (Cochran 1977; Skinner et al. 1989). This finding was re-
produced for SEM parameter estimates by Kaplan and Ferguson (1999) and Asparouhov and
Muthén (2005). Hahs-Vaughn and Lomax (2006) analyzed student data from the Beginning
Postsecondary Students Longitudinal Study to explain college experiences and learning out-
comes with pre-college traits, showing that SEM parameter estimates, standard errors, and
fit measures can change dramatically when complex sampling is taken into account.

Adjustments to point and variance estimators for SEM under complex sampling were discussed
by Muthén and Satorra (1995) and Stapleton (2006), and estimation using pseudo-maximum
likelihood procedures by Asparouhov (2005, 2006) and Asparouhov and Muthén (2005). For
an overview of literature related to complex sampling in structural equation modeling, see
Bollen, Tueller, and Oberski (2013). These procedures have since been implemented in stan-
dard closed-source commercial software for SEM: LISREL (Jöreskog and Sörbom 2006), Mplus
(Muthén and Muthén 2012), EQS (Bentler 2008), and Stata (StataCorp 2011; Press 2011).
Another popular commercial program, AMOS (Arbuckle 2006), does not implement complex
sampling estimation at the date of writing. None of the open-source SEM packages, sem (Fox
2006; Fox, Nie, and Byrnes 2012), openMx (Boker et al. 2011), and lavaan (Rosseel 2012),
directly implement complex survey adjustments. These packages do provide enough flexibility
to allow for such adjustments through resampling methods if the user is willing to program
these (the sem manual provides some guidance to this effect). More user-friendly interfaces
are currently not available. Furthermore, with the exception of Stata, the commercial pack-
ages that do implement estimation procedures for complex sampling still omit features dealing
with several complications that may arise in the analysis of complex surveys:

• Some secondary data sources such as the OECD’s Programme for International Student
Assessment (PISA) do not provide the sampling design variables directly, but instead
provide a set of so-called “replicate weights” (OECD 2009). In principle this represents
a considerable simplification of highly complex survey analysis (Brick, Morganstein, and
Valliant 2000). Currently, however, no SEM software allows for adjustments of SEM
estimators using replicate weights;

• More generally, variance estimation of SEM parameters with complex sampling using
resampling methods such as the jackknife and bootstrap are not implemented directly
but require additional programming on the part of the user (see Stapleton 2008, for a
discussion of these methods in the context of SEM);

• SEM is primarily an analytic method, so that finite population corrections may not
usually be relevant (e.g., Fuller 2009, p. 342). However, SEM is also a flexible method
of reformulating several descriptive methods for which the finite population may be of
interest, such as domain mean and model-based small area estimation. Currently finite
population corrections, which may be relevant for these purposes, are not available in
SEM software.
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The purpose of this article is to introduce the lavaan.survey package for the R environment
(R Core Team 2012), which serves to bring user-friendly complex survey SEM analysis to the
open source SEM implementation lavaan. In addition, by leveraging the many features of the
survey package (Lumley 2004, 2010, 2012) it provides users with the above features currently
omitted from commercially available SEM software. Thanks to code reuse and the flexibility
of the survey and lavaan packages, the lavaan.survey package is able to provide an extremely
flexible, user-friendly, and open source framework for design-based analysis of complex survey
data using SEM. It also allows for the analysis of multiply imputed complex survey data (Little
and Rubin 1987; Graham and Hofer 2000). At the time of writing, a limitation of the package
is that it deals with the continuous case only. The package is available from the Comprehensive
R Archive Network at http://CRAN.R-project.org/package=lavaan.survey.

Section 2 discusses the theory of structural equation modeling in general and SEM under
complex sampling in particular. After a brief overview of the package in section 3, sec-
tions 4.1, 4.2, 4.3, and 4.4 demonstrate the usage of the package by applying it to SEM
analyses arising from the literature.

2. Technical explanation

Different methods have been suggested to deal with complex sampling in SEM. In this article
we will only deal with “aggregate” design-based methods (see Skinner et al. (1989, p. 8);
Muthén and Satorra (1995)). “Design-based” refers to the fact that inferences are based on
the theoretical distribution of all possible samples under a particular survey design. Such a
basis for inference stands in contrast to the “model-based” approach, which derives point and
variance estimators from the assumed model. In practice, the two may sometimes coincide
(see Sterba 2009, for an overview). Three aggregate design-based point estimators have been
suggested in the literature: adjustment of the weights or sample size to an effective sample size
(Stapleton 2002), pseudo-maximum likelihood (Muthén and Satorra 1995; Asparouhov 2005,
2006), and weighted least squares estimation (Skinner et al. 1989, p. 86; Vieira and Skinner
2008); see Stapleton (2006) for an overview of these approaches. For these point estimators,
different variance estimation methods are possible, including linearization (Skinner et al. 1989,
p. 83; Muthén and Satorra 1995, p. 279) and a range of resampling methods (Stapleton 2008).
This article and the lavaan.survey package adopt a framework due to Muthén and Satorra
(1995) that encompasses pseudo maximum likelihood (PML) or weighted (“generalized”) least
squares (WLS) point estimation, and variance estimation by linearization or resampling. The
option of which combination of methods to employ is left to the user, the default being PML,
the de facto standard for SEM at the time of writing (Asparouhov 2005).

The framework adopted here starts from the observation (Skinner et al. 1989, p. 78) that
the problem of the estimation of SEM parameters under complex sampling can be simplified
to the usual problem of estimation of means under complex sampling through a classical
three-step device (e.g., Fuller 1987, appendix 4.B). The current discussion of this remarkable
observation is necessarily more condensed than that found in the comprehensive discussion by
Muthén and Satorra (1995), but, following the design principle of lavaan.survey, also slightly
more general in that it allows one to take into account all complex survey design aspects
allowed for in the survey package. I focus on explaining the three steps which comprise the
basic logic behind complex survey analysis of SEM models followed by lavaan.survey:

http://CRAN.R-project.org/package=lavaan.survey
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1. All SEM parameter estimates are implicit nonlinear functions of the vector of variances
and covariances or, more generally, moments of the observed variables;

2. The moments themselves are linear estimators of the mean vector of a redefined vector
of variables d;

3. Therefore, after fitting a structural equation model using the estimation method of
choice, the usual theory for variance estimation of means under complex sampling can
be applied to the (co)variances and projected back into the parameter space.

This simple logic produces an incredibly flexible framework for SEM estimation incorporating
sampling weights, stratification, and clustering, but also resampling methods and multiple
imputation.

2.1. Structural equation models

Given a p-vector of observed variables y, let Σ denote its population covariance matrix,
and Sn a sample estimator such that Eπ(Sn) = Σ, where Eπ denotes expectation under
the sampling design. A structural equation model (SEM) is a covariance structure model
Σ = Σ(θ) expressing the population covariances Σ as a function of a parameter vector θ, an
often used parameterization of SEM being the “LISREL all-y” model also used by lavaan,

η = Bη + ζ

y = Λη + ε,
(1)

where η is a vector of latent variables, or, equivalently, random effects, and ζ and ε are vectors
of (latent) residuals. This model implies the covariance structure

Σ = Λ(I −B)−1Φ(I −B)−1′Λ′ + Ψ, (2)

where Φ := Var(ζ) and Ψ := Var(ε)1. The model encompasses well-known methods such
as factor analysis (B = I), random effects modeling (B = I, Λ = 1p, Ψ is diagonal and
dg(Ψ) = ψ), and path analysis (Λ = I, Ψ = 0), as well as any combinations that might be
identified. Typically the model parameters are not identifiable without further restrictions;
indeed it is customary to impose more restrictions than necessary for identification, allowing
for a test of these restrictions. In that case the model degrees of freedom is usually taken
to equal df = p∗ − q, where q is the number of free parameters and p∗ = p(p + 1)/2, the
number of unique (co)variances. For clarity the mean structure is ignored, though the present
treatment is easily extended to means and other moments (Satorra 1992).

SEM parameter estimates θ̂n are obtained by minimizing a discrepancy function F (sn, σ(θ)),
where sn := vech(Sn), σ := vech(Σ), and the vech operator denotes columnwise stacking of
the non-redundant moments (Magnus and Neudecker 2007). The most common choice for F
is the maximum likelihood (ML) discrepancy function,

FML = log |Σ(θ)|+ trace(Sn[Σ(θ)]−1)− log |Sn| − p.

It is straightforward to show (e.g., Bollen 1989, ch. 4 appendix) that minimizing FML max-
imizes the likelihood of the data under multivariate normality. Under the model (see Fuller

1Note that in standard LISREL notation, Var(ζ) is usually denoted Ψ and Var(ε) is denoted Θ. To avoid
confusion with the parameter space Θ, we use Neudecker and Satorra (1991)’s notation here.
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1987, pp. 334-5) and as the sample size increases, the FML becomes asymptotically equal to
the weighted (“generalized”) least squares (WLS) fitting function (Browne 1984),

FWLS = [sn − σ(θ)]′Vn[sn − σ(θ)],

where Vn consistently estimates a symmetric estimation weight matrix V . For the asymptotic
equality to normal-theory ML to hold, the estimation weights Vn are chosen as the inverse of
the normal-theory sampling variance of sn, denoted ΓNT (Fuller 1987, appendix 4.B): VNT =
Γ−1

NT = 2−1D′(Σ−1⊗Σ−1)D, where D is the duplication matrix (Magnus and Neudecker 2007).
When the data do not follow a multivariate normal distribution, both FML and FWLS still
provide consistent estimates. The asymptotically optimal estimator is obtained by replacing V
with a consistent estimate of Var(sn)−1, a method sometimes called “asymptotic distribution
free”(ADF) estimation (Browne 1984; Satorra 1989). In spite of its asymptotic optimality, the
ADF estimator has performed very badly in simulation studies of its finite sampling behavior
(Hu, Bentler, and Kano 1992; Bentler and Yuan 1999; Chou, Bentler, and Satorra 2011).

The choice of discrepancy function and estimation weight matrix Vn thus determine the precise
form of the estimator. Regardless of this choice, unless the model is just-identified, θ̂n(sn) is
neither a linear estimator nor an explicit function of sn. However, θ̂n(sn) is the solution to
the equation ∂F [sn, σ(θ)]/∂θ = 0, so that under mild regularity conditions (Satorra 1989),
θ̂n(sn) can be viewed an implicit function of sn.

2.2. Estimation of (co)variances under complex sampling

Since the θ̂n are determined entirely by the sn, it follows that the complex sampling properties
of SEM parameter estimates depend on those of the variances and covariances. These can be
easily studied by redefining them as a linear estimator. Suppose a complex sample is obtained
by sampling, not necessarily with equal probability, primary sampling units (PSU’s) within
strata, after which second and third stages are sampled. For instance, in the British sample
of the European Social Survey round four, 232 Postcode sectors (PSU’s) were sampled within
strata, 20 delivery points (2SU’s) sampled within Postcode sectors, and for each delivery
point, one person aged 15 or over was sampled (3SU’s).

Let x̄ denote a design-consistent estimator of Eπ(x). The estimator x̄ possibly but not nec-
essarily involves weighting. Define

dhi :=
∑
ct

vech[(yhict − ȳ)(yhict − ȳ)′],

where yhict is the vector associated with the t-th third-stage unit of the c-th second-stage unit
of the i-th PSU of stratum h, with the summation going over all the units within the i-th
PSU (Satorra 1992, 260). This device essentially redefines the observed data matrix to d,
simplifying the estimation of the (co)variances s to that of estimating the mean vector

sn = d̄n.

This simplification of the problem to that of estimating a mean implies that the usual the-
ory of estimators for means may be applied. Assuming that Γ := VARπ(sn) is finite, the
variance estimator Γ̂ can be obtained by “nonparametric” Taylor linearization (Skinner et al.
1989, p. 48; Muthén and Satorra 1995, p. 279), or by resampling methods including jack-
knife, balanced repeated replicates, bootstrap, and half-sample methods (Wolter 2007). The
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R implementation of these methods is described by Lumley (2004, 2010). These variance
estimators Γ̂ are also consistent under nonnormality, so that all complex sampling analyses
also take into account any effects of nonnormality of the observed variables. In smaller sam-
ples, non-parametric estimators of Γ may become unstable; since, under the model, Γ̂ also
estimates VARπ[sn − σ(θ)], Yuan and Bentler (1998, p. 293) suggested using residuals in
a model-based adjustment to Γ̂ that was found to stabilize the estimator in small samples;
lavaan.survey allows this optionally.

A common problem in surveys is that of missing data, either through item or unit nonresponse.
A common solution under the assumption of missingness at random given covariates is to
multiply impute the missing values (Little and Rubin 1987; Rubin 2004). For M imputations
this yields M estimates smn for m = 1, ..,M . The point estimate is then simply the average
over imputations, s̄.n. The variance Γ of these estimates can be estimated by (Schafer 1997)

Γ̂MI = M−1
M∑
m

Γ̂m +
M + 1

M(M − 1)

M∑
m

(smn − s̄.n)(smn − s̄.n)′. (3)

In lavaan.survey, this procedure is applied while also taking into account the complex sampling
design within imputations whenever multiply imputed datasets are given as data. This is the
approach taken for other analysis types in many software packages including, for instance,
the survey package. It should be noted, however, that any survey weights should be included
in the imputation models, and Equation (3) may not consistently estimate the variance if the
response mechanism is not at random with respect to the weights (Kott 1995; Kim, Brick,
Fuller, and Kalton 2006). Some care should therefore be taken with this approach when
weights are involved.

2.3. SEM under complex sampling

Complex sampling impacts a structural equation model analysis in two ways:

1. The conventional estimator of the covariance matrix may be biased and inconsistent.
This, in turn, causes bias in the SEM parameter estimates;

2. The sampling variance Γ of consistent estimates of the (co)variances may be affected by
the design. This will affect standard errors and test(s) of model fit.

The first point suggests simply that the design-consistent estimator of the (co)variances d̄
should be used for sn in the fitting function. This will then guarantee consistency of the
estimator θ̂(sn), at least for the population value θ̂(σ), when the model is misspecified. It
can be shown that minimizing FML with d̄ as an estimate of sn is equivalent to the PML
estimator introduced by Skinner et al. (1989, pp. 80–3).

The second point means that a design-consistent estimate Γ̂ of the sampling variance of the
(co)variances under the complex sampling scheme needs to be taken into account. Wolter
(2007, eq. 6.2.2) notes that

VARπ(θ̂n) = Eπ[(θ̂n − Eπ(θ̂n))2] =

(
∂θ̂n
∂sn

)
Γ

(
∂θ̂n
∂sn

)′
+Oπ(r3

n), (4)
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where rn is a term that converges to zero as the sample size increases (see also Lumley 2004,
3-4). When the model is identified, ∂θ̂n/∂sn can be obtained by invoking the implicit function
theorem: since θ̂n is the solution to ∂F [s, σ(θ)]/∂θ = 0,

∂θ̂n
∂sn

=

(
∂2F

∂θ∂θ′

)−1(
∂2F

∂θ∂s′n

)
= [∆′V∆ + oθ(n

1/2)]−1∆′V, (5)

where ∆ := ∂F/∂σ(θ), and oθ(n
1/2) is a term that, under the model, converges to zero as the

sample size increases (see Neudecker and Satorra 1991, for the precise form of both quantities).
Thus, when the model is correct, the asymptotic variance of the parameter estimates is

AVARθ,π(θ̂) = lim
n→∞

Eθ[VARπ(θ̂n)] = (∆′V∆)−1∆′V ΓV∆(∆′V∆)−1, (6)

where Eθ denotes expectation under the model. Equation 6 can be recognized as the “sand-
wich” estimator of variance, which is well-known in econometrics. When FML is used and the
data truly have an iid multivariate normal distribution, but also when FWLS is used and Vn
is chosen such that V ΓV = V , the asymptotically optimal estimator (AO) is obtained. Its
asymptotic variance can then be seen from Equation 6 to reduce to

AVARθ,π,AO(θ̂) = (∆′V∆)−1. (7)

For FML this corresponds to the inverse of the Fisher information.

Two strategies can now be followed for estimation of SEM parameters under complex sam-
pling:

WLS: Fit the model using weighted least squares with data sn = d̄, and the (Moore-
Penrose) inverse Γ̂+ as the estimation weight matrix Vn in Equation 2.1. In this
case, after fitting the model, the simple form of Equation 7 can be used as a variance
estimator;

Robust ML (PML): Fit the model using maximum likelihood with data sn = d̄, and
estimate the variance with Equation 6, setting V = Γ−1

NT and plugging in the design-

consistent Γ̂ matrix.

WLS estimation is asymptotically optimal and similar to the commonly employed complex
sampling estimator for multiple regression (Skinner et al. 1989; Skinner and de Toledo Vieira
2007; Fuller 2009, section 6.3). However, it can lead to unstable estimates and has been found
in simulation studies to have larger mean square error than the robust ML method, as well
as producing test statistics that do not approach their nominal distribution (Hu et al. 1992;
Bentler and Yuan 1999; Vieira and Skinner 2008; Chou et al. 2011). For this reason the robust
ML method is the default in lavaan.survey, though both methods are implemented.

2.4. Goodness-of-fit testing of the restrictions

Under the null hypothesis of model correctness, the residual covariances should approach zero
as the sample size increases. A chi-square statistic for a test of this hypothesis when the
estimation procedure is AO is χ2

AO(df) = nF . A large number of other fit indices exist, all
of which are derived either from this model chi-square statistic or from the residuals directly
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(Kline 2011). When the robust ML procedure is used, nF no longer follows a chi-square
distribution and an adjustment to the test statistic is necessary. The most commonly used
adjustment matches the first moment of the test statistic to that of the true distribution:

χ2
SB(df) = χ2

AO(df)/δ̄, (8)

where δ̄ is the average generalized design effect (Rao and Scott 1984, p. 53; Skinner et al.
1989, pp. 43-4). This adjustment is known in the SEM literature as the “Satorra-Bentler”
(SB) chi-square (Satorra and Bentler 1994). In lavaan, robust ML estimation using the
mean generalized design effect adjustment is called “MLM” estimation, and this is the default
used in lavaan.survey. Equivalently, the options se=’robust’ and test=’Satorra.Bentler’

may be passed to lavaan. The mean generalized design effect is given in the output as
the “scaling correction factor for the Satorra-Bentler correction”. If one defines neff := n/δ̄,
Equation 8 provides a rationale for the effective sample size method discussed by Stapleton
(2002), although the method of obtaining neff is different, and there is no guarantee that
standard errors will be adequately corrected just by replacing n by neff in variance estimators.

Other adjustments include the “mean-and-variance” (T3) adjustment of Asparouhov and
Muthén (2010, p. 4) and the Satterthwaite (1941) adjustment, which adjusts the degrees
of freedom in addition to the value of the test statistic itself. These options are available in
lavaan.survey by making use of their implementations in lavaan. For contingency table tests,
Thomas and Rao (1987) found that the Satterthwaite adjustment had a good overall perfor-
mance, whereas the mean-adjusted test statistic required the coefficient of variation of the
generalized design effects to be small. Although the SEM literature on complex sampling (see
Bollen et al. 2013) has mostly focused on the Satorra-Bentler adjustment, it is therefore possi-
ble that the Satterthwaite adjustment may actually be preferable. Currently, I am not aware
of any simulation studies investigating this issue explictily in SEM; therefore lavaan.survey
follows the SEM literature in choosing the Satorra-Bentler adjustment by default but allows
the Satterthwaite adjustment optionally.

Instead of a chi-square fit statistic, one may also consider an F reference distribution, where
the denominator degrees of freedom are chosen as the survey design degrees of freedom.
This adjustment was found by Thomas and Rao (1987) to perform well when the number of
PSU’s was small (thanks are due to an anonymous reviewer for this suggestion). The function
pval.pFsum allows the user to obtain p-values for the global test statistic from the F reference
distribution with design degrees of freedom.

In small samples or with few clusters relative to the number of observed covariances to be
estimated, it may happen that Γ̂ is singular. This is not a problem in itself, as the model is
typically restricted so that the parameters may still be identified from the observed moments
even when some of these moments are collinear. However, for robust ML there may also
be cases where the effective degrees of freedom for the goodness-of-fit test are smaller than
df = p∗ − q, which is the default. After using robust ML with a singular Γ̂, lavaan.survey
therefore checks whether the degrees of freedom for the goodness-of-fit test are still valid.
If they are not, a warning is issued with the advice to use the Satterthwaite adjustment of
degrees of freedom. lavaan.survey also implements Yuan and Bentler (1998)’s model-based
smoothing of Γ̂ which may represent an alternative way of alleviating this problem; in the
future we plan to add more smoothing estimators to the program.
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Parameter Description Default

lavaan.fit Output from a conventional SEM analysis using
lavaan

-

survey.design Either an svydesign or an svrepdesign object
produced by survey

-

estimator Point and variance estimator to be used Robust ML (PML)

estimator.gamma Any adjustments/smoothing of Γ̂ No adjustments

Table 1: Overview of the parameters of a lavaan.survey call.

3. About the package

lavaan.survey is a concise package written entirely in interpreted R code and published under
the GPL 2. It links the survey and lavaan packages, thus providing an interface to a great
variety of structural equation model analyses under complex sampling. Its aim is to provide
sensible defaults while allowing for flexibility and to check for any estimator-specific problems
where possible. In addition, it pools the mean and covariance estimates from datasets obtained
by multiple imputation to allow for complex sampling analyses with missing data. The general
workflow of a lavaan.survey analysis is:

• Create lavaan fit object to specify the model;

• Create survey svydesign object to specify the sampling design;

• Call the lavaan.survey function with the fit and design objects as arguments.

The order of the first two items does not matter. Table 1 gives an overview of the arguments
taken by the function lavaan.survey.

4. Applications

This section demonstrates the use and features of lavaan.survey by discussing four example
applications. Code and data for the examples may be obtained from http://wp.daob.org/

wp-content/uploads/2013/05/lavaan.survey-examples-paper.zip.

4.1. Application 1: Replicate weights analysis of math ability in PISA

Ferla, Valcke, and Cai (2009) present a SEM analysis of academic self-efficacy and academic
self-concept’s effects on children’s math ability in Belgium. Particularly, they were interested
in how these variables mediated effects on math ability of other variables such as the level of the
school, as well as in the interrelation between efficacy and self-concept. The authors analyzed
data from the OECD’s 2003 Programme for International Student Assessment (PISA), a
large multinational survey that employs multistage stratified sampling (OECD 2009). Due to
the high complexity of PISA’s sampling design as well as for purposes of nondisclosure, the
OECD does not provide the original design variables, but rather a set of 80 replicate weights
generated by the closed-source program WesVarPC2. To take the sampling design into account

2http://www.westat.com/expertise/information_systems/WesVar/

http://wp.daob.org/wp-content/uploads/2013/05/lavaan.survey-examples-paper.zip
http://wp.daob.org/wp-content/uploads/2013/05/lavaan.survey-examples-paper.zip
http://www.westat.com/expertise/information_systems/WesVar/
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Figure 1: Path diagram for a simplified model of children’s math ability in the PISA study.
Observed indicators for the three latent variables are omitted from the picture for clarity.

in SEM analyses of PISA data, these replicate weights need to be taken into account, a feature
not available in any standard SEM software. This section shows how such an analysis may
be performed using lavaan.survey. The 2003 PISA data are freely available from the OECD
website3; here I follow the original authors in analyzing a subset of these data containing the
Belgian sample and variables measuring students’ math ability in four domains, self-concept of
their math ability, self-efficacy, and school level. For the precise definitions of these variables
and the indicators used please see the appendix to Ferla et al. (2009). In addition, gender and
socio-economic status of the parents will be used as fixed covariates. The subset analyzed is
included in the online supplement and can be loaded onto the R workspace with the command

R> load("pisa.be.2003.rda")

In addition to the observed variables, the raw data also contain 80 replicate weights generated
by balanced-repeated replication using Fay (1989)’s method with ρ = 0.5 (OECD 2009). Using
the svrepdesign function from the survey package, a survey design object is defined taking
this into account:

R> des.rep <- svrepdesign(ids=~1, weights=~W_FSTUWT, data=pisa.be.2003,

+ repweights="W_FSTR[0-9]+", type="Fay", rho=0.5)

It may be of interest to educational researchers that the options used here, weights=~W_FSTUWT,
repweights="W_FSTR[0-9]+", type="Fay", and rho=0.5, are applicable to any analysis of
the 2003 PISA data, not just the one at hand.

Having defined the sampling design, the next step is to perform a conventional SEM analysis
without taking this design into account. Figure 1 shows a simplified version of the model
analyzed by Ferla et al. (2009) as a path diagram. The figure shows that a reciprocal effect
between self-concept and self-efficacy is specified, which is identifiable due to the absence of
a direct effect of school level on self-concept. Self-concept and efficacy affect math ability
and are also partially mediating variables for the effect of school level on math ability. All

3http://www.oecd.org/pisa/

http://www.oecd.org/pisa/
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structural relationships are controlled for gender and socio-economic status of the parents.
For clarity, Figure 1 omits the indicators of the three latent variables self-concept, self-efficacy,
and ability; these are assumed to be measured by five, eight, and four indicators respectively
in a simple factor structure. This model can be specified in lavaan syntax as:

R> model <- "

+ math =~ PV1MATH1 + PV1MATH2 + PV1MATH3 + PV1MATH4

+ neg.efficacy =~ ST31Q01 + ST31Q02 + ST31Q03 + ST31Q04 +

+ ST31Q05 + ST31Q06 + ST31Q07 + ST31Q08

+ neg.selfconcept =~ ST32Q02 + ST32Q04 + ST32Q06 + ST32Q07 + ST32Q09

+

+ neg.selfconcept ~ neg.efficacy + ESCS + male

+ neg.efficacy ~ neg.selfconcept + school.type + ESCS + male

+ math ~ neg.selfconcept + neg.efficacy + school.type + ESCS + male

+ "

In this syntax, =~ indicates “measured by” and ~ “regressed on”. Means and variances are
freed in the lavaan function call. For more information on the precise working and syntax
of lavaan, please see Rosseel (2012). A conventional SEM analysis on the raw data is then
performed:

R> fit <- lavaan(model, data=pisa.be.2003, auto.var=TRUE, std.lv=TRUE,

+ meanstructure=TRUE, int.ov.free=TRUE, estimator="MLM")

R> fit

lavaan (0.5-10) converged normally after 161 iterations

Used Total

Number of observations 7785 8796

Estimator ML Robust

Minimum Function Chi-square 8088.256 7275.544

Degrees of freedom 158 158

P-value 0.000 0.000

Scaling correction factor 1.112

for the Satorra-Bentler correction

By specifying estimator="MLM", this conventional analysis uses the option of calculating
nonnormality-robust standard errors and chi-square, yielding a “scaling correction” (average
generalized “design” effect of nonnormality) of 1.1. This serves to make the conventional
analysis more comparable to the complex sampling analysis, which can be expected to increase
the scaling correction relative to the value after taking nonnormality into account.

Now that a survey design object and a lavaan fit object have been obtained, the complex
sampling analysis can be performed using lavaan.survey:

R> fit.surv <- lavaan.survey(lavaan.fit=fit, survey.design=des.rep)
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Estimate s.e.
Naive PML Naive PML creff

neg.selfconcept ~ neg.efficacy -0.021 -0.050 0.032 0.046 1.415
neg.efficacy ~ neg.selfconcept 0.568 0.609 0.046 0.065 1.421
neg.efficacy ~ school.type 0.530 0.518 0.022 0.022 1.009
math ~ neg.selfconcept -0.179 -0.177 0.015 0.021 1.362
math ~ neg.efficacy -0.239 -0.237 0.015 0.018 1.216
math ~ school.type -0.606 -0.596 0.019 0.035 1.858

Table 2: Point and standard error estimates using robust ML with and without correction for
the sampling design using BRR replicate weights.

lavaan (0.5-10) converged normally after 193 iterations

Number of observations 7785

Estimator ML Robust

Minimum Function Chi-square 8187.514 5642.873

Degrees of freedom 158 158

P-value 0.000 0.000

Scaling correction factor 1.451

for the Satorra-Bentler correction

This example call uses all the defaults, i.e., robust ML estimation without model-based
smoothing; this is equivalent to pseudo-maximum likelihood (PML) estimation. The average
generalized design effect taking into account both nonnormality and the sampling design is
1.45, which is 31% higher than that for the conventional analysis only taking nonnormality
into account.

Table 2 gives the point and standard error estimates for the parameters of primary inter-
est, corresponding to the black arrows in Figure 1. For comparison, both the results from
the “naive” conventional SEM analysis and from the lavaan.survey analysis employing the
replicate weights are given. Table 2 shows that the differences in point estimates are relatively
small. The differences in standard error estimates, however, are considerable. The average
ratio between the standard errors from the complex sampling and the conventional analysis,
termed “conditional relative efficiency” (creff) in the table (Oberski 2011, chap. 3, Oberski
2013), is 1.38.

The model fits very badly, even after taking the scaling due to complex sampling into account.
One method of investigating which restrictions are especially offensive is to examine the
“modification indices” (also known as “score” or “Lagrange multiplier” tests) for restricted
parameters. Under the null hypothesis of a correct restriction, these will follow a chi-square
distribution with one degree of freedom. lavaan allows the user to obtain modification indices
with the command modificationIndices, which are adjusted to the complex sampling design
after the call to lavaan.survey.

R> head(arrange(modificationIndices(fit.surv)[,-c(7,9)],

+ mi.scaled, decreasing=TRUE))
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lhs op rhs mi mi.scaled epc sepc.all

1 ST31Q05 ~~ ST31Q07 1964 1354 0.289 0.355

2 ST31Q05 ~~ ST31Q08 566 390 -0.153 -0.201

3 neg.selfconcept =~ PV1MATH1 357 246 -0.019 -0.091

4 ST31Q03 ~~ ST31Q08 348 240 0.122 0.158

5 math =~ ST31Q08 340 235 0.149 0.229

6 ST31Q03 ~~ ST31Q05 332 229 -0.111 -0.144

The plyr function arrange was used to give a concise syntax. The modification indices
adjusted for complex sampling are shown as mi.scaled. The most problematic restrictions
appear to be zero error correlations among items in the self-efficacy construct. This may
indicate common method variance or multidimensionality of the latent self-efficacy variable.

4.2. Application 2: Confirmatory factor analysis of welfare state attitudes

Roosma, Gelissen, and van Oorschot (2012) discuss an analysis of citizens’ attitudes toward
the welfare state. They used data from the 2008 (fourth) round of the European Social
Survey (ESS) to compare factor means that represented whether respondents thought the
welfare state was legitimate and achieved its stated goals across countries. An additional
goal of the study was the investigation of the relationship between the factors. The ESS is a
multinational survey in which each country has its own sampling design – a design that can
vary in complexity from simple random sampling from a population register (e.g., Denmark)
to four-stage stratified cluster sampling (e.g., Turkey). This section analyzes the United
Kingdom sample, focusing on two of the factors investigated by Roosma et al. (2012).

The ESS data for round four are publicly downloadable online4. The UK subset analyzed
here additionally includes information on strata and primary sampling units that is absent
from the public database. The subset is included in the online appendix.

R> load(file="ess4.gb.rda")

Focusing on two factors representing “range” and “outcomes goals” (Roosma et al. 2012, Table
1), a two-factor model is formulated using lavaan syntax as:

R> model.cfa <-

+ "range =~ gvjbevn + gvhlthc + gvslvol + gvslvue + gvcldcr + gvpdlwk

+ goals =~ sbprvpv + sbeqsoc + sbcwkfm"

The “range” factor represents the opinion that government should be responsible for various
outcomes associated with the welfare state and has six observed indicators. The “outcome
goals” factor represents the respondent’s opinion of whether these goals are actually reached,
and is measured by three observed variables. Of particular interest here are the covariance
between the two factors as well as the factor variances. For the precise question formulations
and rationale behind these definitions of the factors, please see the ESS website and the
original article respectively. The factor model can be estimated with lavaan using

R> fit.cfa.ml <- lavaan(model.cfa, data = ess4.gb, estimator="MLM",

+ meanstructure=TRUE, int.ov.free=TRUE, auto.var=TRUE,

4http://ess.nsd.uib.no/ess/round4/

http://ess.nsd.uib.no/ess/round4/
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+ auto.fix.first=TRUE, auto.cov.lv.x=TRUE)

R> fit.cfa.ml

lavaan (0.5-10) converged normally after 51 iterations

Used Total

Number of observations 2108 2273

Estimator ML Robust

Minimum Function Chi-square 483.564 379.983

Degrees of freedom 26 26

P-value 0.000 0.000

Scaling correction factor 1.273

for the Satorra-Bentler correction

This shows again that the nonnormality of the data have a considerable effect on the standard
errors and chi-square test of model fit. Since the original authors were satisfied with the
attained model fit and the focus is here on the estimation of the relationship between the
factors, we shall ignore the issue of model fit in this application.

The U.K. sample was stratified based on 37 regions (stratval). Within each region, postcode
sectors (psu) were listed in increasing order of population density and tenure; sectors with
fewer than 500 delivery points were combined. In the first stage a systematic sample of 232
sectors (225 in Great Britain and 7 in Northern Ireland) was then drawn with probability
proportional to postal delivery point count. The second and third stages were simple random
sampling of 20 postal delivery points within the sector, and selection by Kish grid of one
person aged 15 or over at the selected address. In some cases there was an intermediate stage
in which a dwelling required selection from an address before a person could be selected within
the dwelling. The final sampling weights (dweight) were constructed by the ESS sampling
team by multiplying all selection probabilities together, normalizing to the nominal sample
size, and finally trimming the weights at 4. This rather complicated design can be neatly
summarized in a survey design object:

R> des.gb <- svydesign(ids=~psu, strata=~stratval, weights=~dweight,

+ data=ess4.gb)

After the definition of the sampling design, the confirmatory factor analysis taking it into
account using robust maximum likelihood is again performed using lavaan.survey:

R> fit.cfa.surv <- lavaan.survey(fit.cfa.ml, survey.design=des.gb)

R> fit.cfa.surv

lavaan (0.5-10) converged normally after 50 iterations

Number of observations 2108

Estimator ML Robust

Minimum Function Chi-square 513.094 333.119
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Degrees of freedom 26 26

P-value 0.000 0.000

Scaling correction factor 1.540

for the Satorra-Bentler correction

The mean generalized design effect taking both nonnormality and the sampling design into
account is 21% higher than that taking only nonnormality into account.

An alternative to the default robust ML estimator is weighted least squares using the (general-
ized) inverse of Γ̂ as a weight matrix. This can be accomplished in lavaan.survey by changing
the estimator to “WLS”.

R> fit.cfa.surv.wls <- lavaan.survey(fit.cfa.ml, survey.design=des.gb,

+ estimator="WLS")

Since, as remarked above, this method was found unstable in a range of simulation studies
and applications, a possible adjustment is to smooth the estimation weights for WLS using
the model-based smoothing method suggested by Yuan and Bentler. This can be done by
changing the setting for estimator.gamma to “Yuan-Bentler”.

R> fit.cfa.surv.wls.yb <- lavaan.survey(fit.cfa.ml, survey.design=des.gb,

+ estimator="WLS",

+ estimator.gamma="Yuan-Bentler")

To estimate the covariances used as input for the SEM analysis and their Γ̂ matrix, it is also
possible to use the various resampling methods available in the survey package:

R> des.gb.rep <- as.svrepdesign(des.gb, type="JKn")

In this call to the survey function as.svrepdesign, the jackknife for stratified designs ("JKn")
is specified, which is the default. The confirmatory factor analysis can then be performed on
the jackknifed covariances using lavaan.survey:

R> fit.cfa.surv.rep <- lavaan.survey(fit.cfa.ml, survey.design=des.gb.rep)

R> fit.cfa.surv.rep

lavaan (0.5-10) converged normally after 50 iterations

Number of observations 2108

Estimator ML Robust

Minimum Function Chi-square 513.094 332.248

Degrees of freedom 26 26

P-value 0.000 0.000

Scaling correction factor 1.544

for the Satorra-Bentler correction

In this case, the results of complex sampling CFA using the jackknife gives results very similar
to the default method using Taylor linearization.
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v̂ar(range) v̂ar(goals) ˆcov(range, goals)
Est. s.e. creff Est. s.e. creff Est. s.e. creff

ML, Naive 1.961 0.162 0.188 0.026 -0.111 0.024
ML, Taylor 1.893 0.170 1.046 0.186 0.030 1.175 -0.115 0.033 1.373
ML, jackknife 1.893 0.170 1.050 0.186 0.030 1.177 -0.115 0.033 1.379
WLS 1.063 0.105 0.649 0.056 0.023 0.914 0.031 0.014 0.573
WLS, Y-B 2.370 0.203 1.250 0.160 0.027 1.062 -0.146 0.035 1.458

Table 3: Factor variances and covariance of interest for attitudes to the welfare state in the
UK sample of the European Social Survey (2008). Point and standard error estimates using
robust ML without correction for the sampling design, by Taylor linearization, by jackknifing,
using WLS, and using WLS with the Yuan-Bentler correction.

Table 3 presents point and standard error estimates, as well as a relative efficiency compared
with the naive method for three parameters of interest, namely the factor variances and
the covariance. Table 3 gives results using the five different methods discussed above: ML
not taking the sampling design into account (“naive”), the default robust ML method using
linearization to estimate Γ̂ (“Taylor”), the robust ML method using the stratified jackknife
to estimate Γ̂, weighted least squares using the linearized Γ̂−1 matrix as weights (“WLS”)
and the same method using the model-based smoothing estimate of Γ̂ suggested by Yuan &
Bentler (“WLS, Y-B”).

Table 3 again shows that the point estimates for different versions of maximum likelihood
are very similar. As the conditional relative efficiencies indicate, the standard error estimates
using both Taylor linearization and the jackknife are substantially larger than those obtained
under the naive method; these two methods give very similar results in all respects. Unad-
justed weighted least squares estimation gives point estimates that are wildly different from
those obtained by all of the other methods: most strikingly, the relationship between the fac-
tors is estimated to be positive rather than negative using this method, with z-values larger
than 2 for both WLS and the other methods. However, when the Yuan-Bentler smoother is
applied to the Γ̂ matrix, point estimates are obtained that are much more similar to those
obtained with ML.

Although it is possible that WLS is the only method indicating the correct direction of the
relationship, cautions in the literature on this estimator would suggest that the ML or Yuan-
Bentler smoothed WLS estimators are likely to be preferable. A caveat on this last estimator
is that it relies on the correctness of a model for which the fit statistic indicates significant
misspecification, so that the stability it introduces relative to the WLS estimator may be
paid for with some amount of bias. This trade-off may work out well in some applications,
however.

4.3. Application 3: Multiple imputation of dropouts in the LISS panel

The LISS panel is a web survey panel recruited by probability sampling. A random sample of
households from the Dutch population register was asked to participate in the panel, and all
household members were then asked to partipate. To prevent undercoverage problems, the
panel organizers provided internet connections and computers to those who did not have them.
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Figure 2: The quasi-simplex model for the evaluation of measurement error in the question
“How many hours per week do you use the internet at home?”.

For more details on the design of the LISS panel and recruitment efforts, see Scherpenzeel
(2011). The LISS panel measures a wide range of variables and allows external researchers to
submit proposals as well.

One question of interest is whether these questions have sufficient reliability to be of use
for substantive research. Thanks to the longitudinal design, this can be investigated by
the so-called “quasi-simplex” model (Alwin 2011), which Figure 2 represents as a structural
equation model for the variable “internet use”. The model in Figure 2 is only identified by
the additional restriction var(et) = ϑ, i.e., equality of measurement error variances (Jöreskog
1970). Parameters of interest could then be the error variance ϑ itself, but also the reliability
ratio at a time point, for example ρ1 := ϑ/var(cs08a247).

The data for estimating the model in Figure 2 can be loaded by:

R> load(file="liss.rda")

This dataset contains the answers 7369 respondents gave to the question “How many hours
per week, on average, do you use the internet at home?” when asked in 2008, 2009, 2010,
and 2011, as well as the household identifier. The model in Figure 2 can be written in lavaan
syntax as:

R> model.liss <- "

+ cs08 =~ 1*cs08a247

+ cs09 =~ 1*cs09b247

+ cs10 =~ 1*cs10c247

+ cs11 =~ 1*cs11d247

+

+ cs09 ~ cs08

+ cs10 ~ cs09

+ cs11 ~ cs10

+
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+ cs08a247 ~~ vare*cs08a247

+ cs09b247 ~~ vare*cs09b247

+ cs10c247 ~~ vare*cs10c247

+ cs11d247 ~~ vare*cs11d247

+

+ cs08 ~~ vart08*cs08

+

+ reliab.ratio := vart08 / (vart08 + vare)

+ "

The last line defines the reliability ratio as reliab.ratio. lavaan will automatically output
the point estimate for reliab.ratio as well as its standard error (using the delta method).
As before, the model accounting for household clustering (nohouse_encr) can be estimated
with lavaan.survey:

R> fit.liss <- lavaan(model.liss, auto.var=TRUE,

+ meanstructure=TRUE, int.ov.free=TRUE, data=liss)

R> des.liss <- svydesign(ids=~nohouse_encr, prob=~1, data=liss)

R> fit.liss.surv <- lavaan.survey(fit.liss, des.liss)

R> fit.liss.surv

lavaan (0.5-10) converged normally after 26 iterations

Number of observations 3374

Estimator ML Robust

Minimum Function Chi-square 2.496 1.836

Degrees of freedom 2 2

P-value 0.287 0.399

Scaling correction factor 1.360

for the Satorra-Bentler correction

The reliability estimate itself and its standard error and 95% confidence interval can be
inspected by

R> parameterEstimates(fit.liss.surv)[24,]

lhs op rhs label est se z pvalue

1 reliab.ratio := vart08/(vart08+vare) reliab.ratio 0.622 0.017 37.5 0

ci.lower ci.upper

1 0.589 0.654

As shown in the lavaan output, although there are 7369 respondents in the dataset, after
listwise deletion only 3374 complete observations are left to estimate the reliability. Figure 3
shows that this large amount of missing data is mostly due to panel attrition (dropouts) over
time. The attrition is considerable, reaching 46% in the 2011 wave.



Journal of Statistical Software 19

Attrition in the LISS panel 2008−2011
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Figure 3: The percentage of item nonresponders to the internet use question in four consec-
utive waves of the LISS panel study.

One method of dealing with this large amount of missing data is multiple imputation. As
with many missing data methods, the core assumption is that the data are missing at random,
given the covariates used for imputation. In this application the covariates for a missing
answer by a respondent are that respondent’s answers at previous timepoints, so that this
assumption is not entirely implausible. To create multiply imputed datasets, the R libraries
mice, mi, and Amelia can be used, but the user can also create multiply imputed datasets
with an external program such as WinBugs. This example uses the mice package (Buuren
and Groothuis-Oudshoorn 2011) to impute the dropouts 100 times (not run):

R> library("mice")

R> liss.imp <- mice(liss, m=100, method="norm", maxit=100)

The lavaan.survey package follows the survey package’s design in employing the mitools
package to analyze multiply imputed datasets. This provides full flexibility by allowing
the multiply imputed datasets to come from any source. After imputation using mice, an
imputationList object can be created by:

R> library("mitools")

R> liss.implist <- lapply(seq(liss.imp$m), function(im) complete(liss.imp, im))

R> liss.implist <- imputationList(liss.implist)

The analysis can then proceed as before, using liss.implist as data; lavaan.survey will de-
tect that multiply imputed datasets have been given as input and pool these in the estimation
of the covariance and Γ̂ matrices.

R> des.liss.imp <- svydesign(ids=~nohouse_encr, prob=~1, data=liss.implist)

R> fit.liss.surv.mi <- lavaan.survey(fit.liss, des.liss.imp)

R> fit.liss.surv.mi

lavaan (0.5-10) converged normally after 26 iterations
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Number of observations 7369

Estimator ML Robust

Minimum Function Chi-square 10.611 8.659

Degrees of freedom 2 2

P-value 0.005 0.013

Scaling correction factor 1.225

for the Satorra-Bentler correction

As can be seen in the output, with this method all 7369 available observations are used in
the estimation – the uncertainty across imputations is taken into account via the Γ̂ matrix
calculated by lavaan.survey.

R> parameterEstimates(fit.liss.surv.mi)[24,]

lhs op rhs label est se z pvalue

1 reliab.ratio := vart08/(vart08+vare) reliab.ratio 0.612 0.011 56.1 0

ci.lower ci.upper

1 0.591 0.634

Using the multiply imputed dataset, the reliability estimate for the first timepoint is slightly
lower than that when using the default listwise deletion. The confidence interval, in spite
of the added uncertainty due to the multiple imputations, is narrower, indicating an overall
increase in information used relative to listwise deletion.

4.4. Application 4: Species diversity and O2 productivity of algae in streams

The features of lavaan.survey can not only be applied to surveys, but more generally to any
situation in which the observations are not iid. To demonstrate a non-survey analysis with
dependent observations, we reproduce an analysis of an experiment on patches of algae in
Californian streams. Cardinale, Bennett, Nelson, and Gross (2009) chose 20 streams in the
Sierra Nevada. In each stream, they placed 5 or 10 PVC elbows containing different levels
of nutrients and a small patch of agar on which algae could grow. They then returned to
the streams about 42 days later and measured 1) species diversity in the stream, 2) species
diversity in each patch, 3) biomass of the algae, and 4) rate of oxygen production on each
patch. Their structural equation model explicates the indirect relationship between patch di-
versity and oxygen production and the role played by the experimentally manipulated nutrient
supply. Data on 127 patches in 20 streams are available from:

R> load(file="cardinale.rda")

Cardinale et al. (2009)’s path model relating log(Nutrients) and log (Nutrients)2 to species
diversity, biomass and oxygen production can be formulated as

R> model.card <- '
+ PatchDiversity ~ logNutrient + logNutrient2 + StreamDiversity
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+ Biomass ~ PatchDiversity + logNutrient

+ O2Production ~ logNutrient + Biomass

+ logNutrient ~~ logNutrient2'

This model can be fitted to the patches of algae using

R> fit.card <- sem(model.card, data=cardinale, fixed.x=FALSE, estimator="MLM")

The Satorra-Bentler chi-square is 6.18 on 7 degrees of freedom with scaling factor 0.95 and
thus appears to be in line with the observed covariances (p =0.519).

The 127 patches were considered independent observations. In practice, however, patches
are nested within streams. A way of taking this into account while still estimating the same
target parameters is to use lavaan.survey, viewing the streams as clusters.

R> des.card <- svydesign(ids=~Stream, probs=~1, data=cardinale)

R> fit.card.survey <- lavaan.survey(fit.card, des.card, estimator="MLM")

The corrected model yields a Satorra-Bentler chi-square of 3.88 on 7 degrees of freedom with
scaling factor 1.52. The conclusion on model fit does not change (p = 0.793). The only
qualitative difference between the non-iid analysis and the robust iid analysis is that the
nonlinear effect of log(Nutrient)2 on patch species diversity does not differ significantly from
zero (p = 0.051) in the robust iid analysis, while it is does (p = 0.005) in the non-iid analysis.

The Satorra-Bentler chi-square p-value for the overall model fit statistic is derived from large-
sample theory applied not only to the number of observations, but also to the number of
clusters. Since there are only 20 clusters, a better finite-sample performance might be expected
from a p-value obtained from an F reference distribution with 19 denominator degrees of
freedom. It can be obtained using

R> pval.pFsum(fit.card.survey, survey.design=des.card)

The p-value from the F reference distribution (0.610) differs considerably from that obtained
using the chi-square reference distribution (0.793), although neither leads to a rejection of the
null hypothesis.

5. Summary

Structural equation modeling is frequently applied to samples that are not iid: lavaan.survey
is designed to deal with this case. This article introduced the lavaan.survey package and
demonstrated its usage and some of its features by application to four examples motivated by
the literature. Because the package joins together the lavaan and survey packages, both very
flexible implementations of respectively structural equation modeling and complex survey
analysis, the number of combinations of SEM analyses and sampling designs is countless, and
not all of these possibilities could be demonstrated. Instead the goal has been to demonstrate,
on the one hand, the manner in which SEM analyses using lavaan might be adapted to
incorporate the issue of non-iid samples, and, on the other, the application of the SEM
analysis framework to common problems in complex survey analysis. By joining these two
worlds in the open-source R environment, lavaan.survey hopes to stimulate progress in the
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various application areas of SEM, as well as provide a flexible framework for the analysis of
methodological issues in survey methodology. An important limitation of lavaan.survey at
the time of writing is that categorical data cannot be incorporated, a feature that is planned
for future releases of the package.
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